帳號:guest(18.188.197.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林郡嬿
作者(外文):Lin, Chun-Yen
論文名稱(中文):用於分析台灣 COVID-19 的流行病網路方法
論文名稱(外文):An Epidemic Network Approach for Analysing COVID-19 in Taiwan
指導教授(中文):張正尚
指導教授(外文):Chang, Cheng-Shang
口試委員(中文):陳震宇
李端興
林華君
口試委員(外文):Chen, Jen-Yeu
Lee, Duan-Shin
Lin, Hwa-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:109064505
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:52
中文關鍵詞:COVID-19人流變化DeltaOmicronSEQIR模型匡列隔離
外文關鍵詞:COVID-19MobilityDeltaOmicronSEQIRQuarantine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:404
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本篇論文中,我們使用人流資料和疾病流行模型分析台灣 COVID-19 的疫情。分
析台灣至今經歷 COVID-19 不同的三個時期:Delta 時期、Omicron 早期和 Omicron
後期。我們解釋了為什麼在前兩個時期沒有引起疫情大爆發,以及在 Omicron 變異株
後期導致確診病例迅速上升的可能因素。利用 Google 提供的人流趨勢變化資料,並
且改進了一個 SEQIR 模型,使模擬更接近實際情況。為了分析疫情持續時間和確診
病例數對疫情造成的影響,我們嘗試了不同的因素進行模擬,並從實驗結果有以下結
論:(一)較低的人流移動更容易匡列接觸者,減少隱形的傳播鏈;(二)佩戴口罩的
比例會影響疫情持續時間和確診人數;(三)隔離時間越短,疫情爆發的機會就越大。
因此我們認為人流變化、戴口罩和隔離政策是影響台灣 COVID-19 的三個關鍵因素。
In this thesis, we analyze the COVID-19 pandemic in Taiwan using mobility data and the epidemic model. To explain three different stages that Taiwan has gone through:
the Delta variant, the early stage of the Omicron variant, and the later stage of the Omicron variant. We explain why the first two periods did not cause a major outbreak in Taiwan and the possible factors that caused the confirmed cases to rise quickly in the later stage of the Omicron variant. Using the human mobility data provided by Google, we improved a SEQIR model so that the simulation could get close to the actual situation. To analyze the impact of the duration and the number of confirmed cases of the epidemic, we experimented with different factors that could have impacts on the spread of the contagious disease. From our experimental results, we reach the following conclusions: (1) Low human mobility facilitates contact tracing and that reduces invisible chains of transmission; (2) The proportion of the population wearing masks could affect the duration of an epidemic and the number of confirmed cases; (3) Shortening quarantine periods increases the chance of having an outbreak. We believe that human mobility, wearing masks, and the quarantine policy are the three key factors impacting COVID19.
Contents . . . . . . . . . . . . . . . . . . . . 1
List of Figures . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . .6
1 Introduction . . . . . . . . . . . . . . . . . .7
2 Human mobility - Delta variant stage. . . . . . 12
2.1 Dataset . . . . . . . . . . . . . . . . . 12
2.2 Analysis and discussion . . . . . . . . .. 13
2.2.1 Human mobility in Taiwan . . . . . . 13
2.2.2 Human mobility in four different countries . . . 18
2.2.3 Three cases of the Delta variant in Taiwan . . . 20
3 SEQIR Model - Omicron variant early stage . . . . . . . . 22
3.1 Research Method . . . . . .. . . . . . . . . . . . . . 22
3.1.1 Power-law degree distribution .. . . . . . . . . 23
3.1.2 Configuration Model .. . . . . . . . . . . . . . 24
3.1.3 SEQIR Model . . . . . . . . . . . . . . . . . . 24
3.1.4 Parameter Setup . . . . . . . . . . . . . . . .26
3.1.5 Simulation . . . . . . . . . . . . . . . . . . . 28
3.2 Experiments and Results . . . . . . . . . . . . . . . . 31
3.2.1 Proportion of infectious nodes in the exposed state . 31
3.2.2 The probability of quarantine . . . . . .. . . . . . 34
3.2.3 A small number of infected node . . . . .. . . . . . 37
4 Quarantine periods - Omicron variant later stage . . . . . . . .43
5 Conclusion 46
6 Appendix 49
[1] L. Y. H. Chan, B. Yuan, and M. Convertino, “Covid-19 non-pharmaceutical intervention portfolio effectiveness and risk communication predominance,” Scientific reports, vol. 11, no. 1, pp. 1–17, 2021.
[2] W. H. Organization et al., “Non-pharmaceutical public health measures for mitigating the risk and impact of epidemic and pandemic influenza: annex: report of systematic literature reviews,” World Health Organization, Tech. Rep., 2019.
[3] “WHO:Tracking SARS-CoV-2variant,” https://www.who.int/en/activities/
tracking-SARS-CoV-2-variants/.
[4] C. for Disease Control and Prevention, “Delta Variant: What you need to know about variants,” Centers for Disease Control and Prevention, Tech. Rep., 2022.
[5] “Omicron Variant: What you need to know about variants.”
[6] Y.-C. Chen, P.-E. Lu, C.-S. Chang, and T.-H. Liu, “A time-dependent sir model for covid-19 with undetectable infected persons,” Ieee transactions on network science and engineering, vol. 7, no. 4, pp. 3279–3294, 2020.
[7] T. K. Burki, “Omicron variant and booster covid-19 vaccines,” The Lancet Respiratory Medicine, vol. 10, no. 2, p. e17, 2022.
[8] “How much protection COVID-19 vaccines give you against the Delta variant.” https://reurl.cc/vdzjWa.
[9] “Moderna vs. Pfizer: Is One Vaccine Stronger Against Delta Variant.” https://reurl.cc/q5Rjk0.50
[10] “A cluster case diagnosed the Delta variant in Pingtung.” https://www.cna.com.tw/news/ahel/202108060273.aspx.
[11] “Pilot of Taiwanese airline diagnoised the Delta variant.” https://www.cna.com.tw/news/firstnews/202109180127.aspx.
[12] “A cluster case diagnosed the Delta variant in the kindergarten of New Taipei City.” https://www.storm.mg/article/3954544.
[13] “COVID-19 infections rise, Delta variant spreads to 132 countries,” https://news.un.org/en/story/2021/07/1096572.
[14] M. E. J. Newman, Networks: An Introdction. Oxford, 2010.
[15] “COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University,” https://github.com/CSSEGISandData/COVID-19.
[16] “Google COVID-19 Community Mobility Report and Dataset,” https://www.google.com/covid19/mobility/.
[17] “The daily number of confirmed cases in Taiwan.” https://covid-19.nchc.org.tw/dt 005-covidTable taiwan.php.
[18] “The daily number of people entering and leaving each station of Taiwan Railway.”https://data.gov.tw/dataset/8792.
[19] “Global daily COVID-19 confirmed number and vaccine data.” https://covid-19.nchc.org.tw/dt owl.php?dt name=3.
[20] “The graph of the relationship with the confirmed cases in Taiwan.” https://www.commonhealth.com.tw/article/84188.
[21] “The Delphi Group at Carnegie Mellon University and University of Maryland COVID-19 Trends and Impact Surveys, in partnership with Facebook; Kaiser Family Foundation; YouGov COVID-19 Behaviour Tracker survey.” https://covid19. healthdata.org/taiwan-(province-of-china)?view=mask-use&tab=trend.51
[22] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, and J. Shaman, “Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (sarscov-2),” Science, vol. 368, no. 6490, pp. 489–493, 2020.
[23] S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, C. Whittaker, H. Zhu, T. Berah, J. W. Eaton et al., “Estimating the effects of nonpharmaceutical interventions on covid-19 in europe,” Nature, vol. 584, no. 7820, pp.257–261, 2020.
[24] O. Reich, G. Shalev, and T. Kalvari, “Modeling covid-19 on a network: superspreaders, testing and containment,” MedRxiv, 2020.
[25] “Source code for SEQIR model.” https://github.com/ofir-reich/seir-graph.
[26] S. Brief, “Community use of cloth masks to control the spread of sars-cov-2,” Science Briefs, vol. 34009773, 2020.
[27] J. Dehning, J. Zierenberg, F. P. Spitzner, M. Wibral, J. P. Neto, M. Wilczek, and V. Priesemann, “Inferring change points in the spread of covid-19 reveals the effectiveness of interventions,” Science, vol. 369, no. 6500, p. eabb9789, 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *