帳號:guest(52.14.172.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江昀欣
作者(外文):Chiang, Yun-Hsin
論文名稱(中文):帶雜訊的非正則重覆時槽式阿羅哈平行解碼之吞吐量分析
論文名稱(外文):Throughput Analysis for Parallel Decoding of Irregular Repetition Slotted ALOHA with Noise
指導教授(中文):張正尚
指導教授(外文):Chang, Cheng-Shang
口試委員(中文):洪樂文
趙啟超
謝欣霖
王奕翔
口試委員(外文):Hong, Yao-Win
Chao, Chi-chao
Shieh, Shin-Lin
Wang, I-Hsiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:通訊工程研究所
學號:109064501
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:41
中文關鍵詞:物聯網多重接取連續干擾消除平行解碼信息傳遞演算法
外文關鍵詞:Internet-of-Thingsmultiple accesssuccessive interference cancellationparallel decodingmessage-passing algorithm
相關次數:
  • 推薦推薦:0
  • 點閱點閱:392
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於簡單性和可擴展性,對於含有大量物聯網設備的非協調性多重接取,使用連續干擾消除 (SIC) 技術的非正則重覆時槽式阿羅哈(IRSA)方案是一種很有前途的解決方法。然而,IRSA的迭代解碼器本質上是循序的,因此可能會因為不完善的SIC導致一連串的錯誤。在本論文中,我們提出了兩個對於IRSA在加性高斯白雜訊通道裡的平行解碼方案。我們的第一個演算法限制在與IRSA中的SIC解碼過程相對應的 SIC 解耦矩陣。為此,我們提出了一種訊息傳遞算法,此演算法可以在當IRSA系統的用戶-時槽二分圖是非循環式的情況下找到最佳的SIC解耦矩陣,此最佳的SIC解耦矩陣可以最小化累積的雜訊。這包含了競爭解決分集時槽式阿羅哈(CRDSA)系統,此系統恰好傳送兩個一模一樣的封包。我們的第二個演算法由第一個演算法進行拓展,將兩個SIC解耦矩陣進行最佳的組合來找到對於CRDSA而言最佳的解耦矩陣。使用隨機圖分析,我們推導出基於閾值的解碼模型下,競爭解決分集時槽式阿羅哈(CRDSA)使用兩種平行解碼演算法的吞吐量。我們也進行了各種數值實驗來說明有限迭代次數的循序解碼與預定義訊雜比(SNR)閾值的平行解碼之間的權衡。我們的數值實驗結果展示了當SNR比解碼閾值大得多時,可以利用平行解碼來顯著減少解碼時間並達到可比較的吞吐量。
Due to its simplicity and scalability, the Irregular Repetition Slotted ALOHA (IRSA) system that uses the successive interference cancellation (SIC) technique is a promising solution for uncoordinated multiple access of a massive number of Internet-of-Things (IoT) devices. However, the peeling (iterative) decoder for IRSA is sequential, and it might lead to cascading errors due to imperfect SIC. In this thesis, we propose two parallel decoding algorithms for IRSA in an additive white Gaussian noise channel. Our first algorithm is limited to SIC-decoupling matrices that correspond to the SIC decoding process in IRSA. For this, we propose a message-passing algorithm to find the optimal SIC-decoupling matrix that can minimize the accumulated noise power when the induced user-slot bipartite graph of an IRSA system is acyclic. This includes the Contention Res olution Diversity Slotted ALOHA (CRDSA) system that sends exactly two copies for each packet as a special case. Our second algorithm extends the first one by finding the optimal decoupling matrix for CRDSA through an optimal combination of two SIC decoupling matrices. Using a random graph analysis, we derive the throughput for the two parallel decoding algorithms of CRDSA in a threshold-based decoding model. We also conduct various numerical experiments to illustrate the tradeoffs between sequential decoding with a limited number of iterations and parallel decoding with a predefined signal-to-noise ratio (SNR) threshold. Our numerical results show that one can significantly reduce the decoding time and achieve comparable throughput by parallel decoding when the SNR is substantially larger than the decoding threshold.
Abstract
Contents-------------------------------------------------------------1
List of Figures------------------------------------------------------2
1 Introduction-------------------------------------------------------3
2 Parallel decoding of IRSA------------------------------------------7
2.1 Review of IRSA--------------------------------------------------7
2.2 Parallel decoding-----------------------------------------------9
2.2.1 The optimization problem-------------------------------------9
2.2.2 Solving the optimization problem for CRDSA------------------11
2.2.3 Solving the optimization problem for IRSA with an acyclic bipartite graph-----------------------------------------------------13
2.2.4 Throughput analysis for parallel decoding of CRDSA----------17
2.3 Compare the performance between sequential decoding and parallel decoding------------------------------------------------------------19
3 General decoupling matrices for CRDSA-----------------------------22
3.1 Further reduction of the accumulated noise power---------------22
3.2 The pseudoinverse for an acyclic bipartite graph of CRDSA------26
3.3 Throughput analysis for parallel decoding of CRDSA by using the pseudoinverse-------------------------------------------------------32
3.4 Performance comparsion between parallel decoding in Section 2.2.4 and parallel decoding by using the pseudoinverse in Section 3.3-----34
4 Conclusion--------------------------------------------------------37
[1] C.-P. Li, J. Jiang, W. Chen, T. Ji, and J. Smee, “5g ultra-reliable and low-latency systems design,” in Networks and Communications (EuCNC), 2017 European Con ference on. IEEE, 2017, pp. 1–5.
[2] M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency wireless communication: Tail, risk, and scale,” Proceedings of the IEEE, vol. 106, no. 10, pp.1834–1853, 2018.
[3] P. Popovski, C. Stefanovi´c, J. J. Nielsen, E. De Carvalho, M. Angjelichinoski, K. F. ˇTrillingsgaard, and A.-S. Bana, “Wireless access in ultra-reliable low-latency com munication (URLLC),” IEEE Transactions on Communications, vol. 67, no. 8, pp.5783–5801, 2019.
[4] T.-K. Le, U. Salim, and F. Kaltenberger, “An overview of physical layer design for Ultra-Reliable Low-Latency Communications in 3GPP releases 15, 16, and 17,” IEEE Access, 2020.
[5] Y. Polyanskiy, “A perspective on massive random-access,” in 2017 IEEE Interna tional Symposium on Information Theory (ISIT). IEEE, 2017, pp. 2523–2527.
[6] M. Kazemi, T. M. Duman, and M. M´edard, “Collision resolution for random access,” IEEE Transactions on Wireless Communications, 2021.
[7] V. K. Amalladinne, J.-F. Chamberland, and K. R. Narayanan, “A coded compressed sensing scheme for unsourced multiple access,” IEEE Transactions on Information Theory, vol. 66, no. 10, pp. 6509–6533, 2020.
[8] A. Fengler, P. Jung, and G. Caire, “SPARCs and AMP for unsourced random ac cess,” in 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019, pp. 2843–2847.
[9] V. K. Amalladinne, A. K. Pradhan, C. Rush, J.-F. Chamberland, and K. R.Narayanan, “Unsourced random access with coded compressed sensing: Integrat ing AMP and belief propagation,” IEEE Transactions on Information Theory, 2021.
[10] E. Casini, R. De Gaudenzi, and O. D. R. Herrero, “Contention resolution diversity slotted ALOHA (CRDSA): An enhanced random access schemefor satellite access packet networks,” IEEE Transactions on Wireless Communications, vol. 6, no. 4, 2007.
[11] G. Liva, “Graph-based analysis and optimization of contention resolution diversity slotted ALOHA,” IEEE Transactions on Communications, vol. 59, no. 2, pp. 477–487, 2011.
[12] K. R. Narayanan and H. D. Pfister, “Iterative collision resolution for slotted ALOHA: An optimal uncoordinated transmission policy,” in Turbo Codes and Iterative Infor mation Processing (ISTC), 2012 7th International Symposium on. IEEE, 2012, pp.136–139.
[13] E. Paolini, G. Liva, and M. Chiani, “Random access on graphs: A survey and new results,” in Signals, Systems and Computers (ASILOMAR), 2012 Conference Record of the Forty Sixth Asilomar Conference on. IEEE, 2012, pp. 1743–1747.
[14] Z. Sun, Y. Xie, J. Yuan, and T. Yang, “Coded slotted ALOHA for erasure channels: Design and throughput analysis,” IEEE Transactions on Communications, vol. 65, no. 11, pp. 4817–4830, 2017.
[15] C. Stefanovi´c and D. Vukobratovi´c, “Coded random access,” in ˇ Network Coding and Subspace Designs. Springer, 2018, pp. 339–359.
[16] M. Oinaga, S. Ogata, and K. Ishibashi, “Design of coded ALOHA with ZigZag decoder,” IEEE Access, vol. 7, pp. 168 527–168 535, 2019.
[17] Y.-C. Huang, S.-L. Shieh, Y.-P. Hsu, and H.-P. Cheng, “Iterative collision resolution for slotted ALOHA with NOMA for heterogeneous devices,” IEEE Transactions on Communications, vol. 69, no. 5, pp. 2948–2961, 2021.
[18] F. Clazzer, E. Paolini, I. Mambelli, and C. Stefanovi´c, “Irregular repetition slotted ALOHA over the Rayleigh block fading channel with capture,” in 2017 IEEE International Conference on Communications (ICC). IEEE, 2017, pp. 1–6.
[19] I. Hmedoush, C. Adjih, P. M¨uhlethaler, and V. Kumar, “On the performance of irregular repetition slotted aloha with multiple packet reception,” in 2020 Interna tional Wireless Communications and Mobile Computing (IWCMC). IEEE, 2020, pp. 557–564.
[20] N. Abramson, “The ALOHA system: another alternative for computer communica tions,” in Proceedings of the November 17-19, 1970, fall joint computer conference. ACM, 1970, pp. 281–285.
[21] R. Gallager, “Low-density parity-check codes,” IRE Transactions on information theory, vol. 8, no. 1, pp. 21–28, 1962.
[22] E. Paolini, G. Liva, and A. G. i Amat, “A structured irregular repetition slotted ALOHA scheme with low error floors,” in 2017 IEEE International Conference on Communications (ICC). IEEE, 2017, pp. 1–6.
[23] A. ParandehGheibi, J. K. Sundararajan, and M. M´edard, “Collision helps-algebraic collision recovery for wireless erasure networks,” in 2010 Third IEEE International Workshop on Wireless Network Coding. IEEE, 2010, pp. 1–6.
[24] A. Klein, G. K. Kaleh, and P. W. Baier, “Zero forcing and minimum mean-square error equalization for multiuser detection in code-division multiple-access channels,” IEEE transactions on Vehicular Technology, vol. 45, no. 2, pp. 276–287, 1996.
[25] X. Wang and H. V. Poor, “Blind equalization and multiuser detection in dispersive CDMA channels,” IEEE Transactions on Communications, vol. 46, no. 1, pp. 91–103, 1998.
[26] A. Wiesel, Y. C. Eldar, and S. Shamai, “Zero-forcing precoding and generalized inverses,” IEEE Transactions on Signal Processing, vol. 56, no. 9, pp. 4409–4418, 2008.
[27] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 599–618, 2001.
[28] O. del Rio Herrero and R. De Gaudenzi, “A high-performance MAC protocol for consumer broadband satellite systems,” 2009.
[29] S. Gollakota and D. Katabi, “Zigzag decoding: Combating hidden terminals in wire less networks,” in Proceedings of the ACM SIGCOMM 2008 conference on Data communication, 2008, pp. 159–170.
[30] M. Newman, Networks: an introduction. OUP Oxford, 2009.
[31] G. Choudhury and S. Rappaport, “Diversity ALOHA - a random access scheme for satellite communications,” IEEE Transactions on Communications, vol. 31, no. 3, 1983.
[32] E. H. Moore, “On the reciprocal of the general algebraic matrix,” Bull. Am. Math. Soc., vol. 26, pp. 394–395, 1920.
[33] R. Penrose, “A generalized inverse for matrices,” in Mathematical proceedings of the Cambridge philosophical society, vol. 51, no. 3. Cambridge University Press, 1955, pp. 406–413.
[34] S. H. Friedberg, A. J. Insel, and L. E. Spence, “Linear algebra: Pearson new international edition pdf ebook,” 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *