|
[1] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N. Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2, pp. 6–36, 2013.
[2] G. Lu and B. Fei, “Medical hyperspectral imaging: A review,” J. Biomed. Opt., vol. 19, no. 1, pp. 1–24, 2014.
[3] D.-W. Sun, Hyperspectral Imaging for Food Quality Analysis and Control. Elsevier, 2010.
[4] C.-I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Springer Science & Business Media, 2003, vol. 1.
[5] B. Rasti, B. Koirala, P. Scheunders, and P. Ghamisi, “How hyperspectral image unmixing and denoising can boost each other,” Remote Sens., vol. 12, no. 11, p. 1728, 2020.
[6] T. Akgun, Y. Altunbasak, and R. M. Mersereau, “Super-resolution recon- struction of hyperspectral images,” IEEE Trans. Image Process., vol. 14, no. 11, pp. 1860–1875, 2005.
[7] W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, et al., “A signal processing perspective on hyperspectral unmixing: Insights from remote sensing,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 67–81, 2013.
[8] B. Rasti, P. Scheunders, P. Ghamisi, G. Licciardi, and J. Chanussot, “Noise reduction in hyperspectral imagery: Overview and application,” Remote Sens., vol. 10, no. 3, p. 482, 2018.
[9] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image de- noising,” in Proc. IEEE CVPR, vol. 2, 2005, pp. 60–65.
[10] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259–268, 1992.
[11] H. Othman and S.-E. Qian, “Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 397–408, 2006.
[12] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “Nonlocal transform- domain filter for volumetric data denoising and reconstruction,” IEEE Trans. Image Process., vol. 22, no. 1, pp. 119–133, 2012.
[13] H. K. Aggarwal and A. Majumdar, “Hyperspectral image denoising using spatio-spectral total variation,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 3, pp. 442–446, 2016.
[14] J. Xue, Y. Zhao, W. Liao, and S. G. Kong, “Joint spatial and spectral low- rank regularization for hyperspectral image denoising,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 4, pp. 1940–1958, 2017.
[15] J. Xue, Y. Zhao, W. Liao, and J. C.-W. Chan, “Nonlocal low-rank regular- ized tensor decomposition for hyperspectral image denoising,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 5174–5189, 2019.
[16] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral variance estimation: A low-rank approach,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 700–711, 2012.
[17] W. He, N. Yokoya, and X. Yuan, “Fast hyperspectral image recovery of dual- camera compressive hyperspectral imaging via non-iterative subspace-based fusion,” IEEE Trans. Image Process., vol. 30, pp. 7170–7183, 2021.
[18] L. Zhuang and J. M. Bioucas-Dias, “Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 3, pp. 730–742, 2018.
[19] H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, “Hyperspectral image restoration using low-rank matrix recovery,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4729–4743, 2013.
[20] M. Golbabaee and P. Vandergheynst, “Hyperspectral image compressed sens- ing via low-rank and joint-sparse matrix recovery,” in Proc. IEEE ICASSP, 2012, pp. 2741–2744.
[21] Y. Wang, J. Peng, Q. Zhao, Y. Leung, X.-L. Zhao, and D. Meng, “Hyper- spectral image restoration via total variation regularized low-rank tensor decomposition,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 4, pp. 1227–1243, 2017.
[22] M. Wang, Q. Wang, J. Chanussot, and D. Li, “Hyperspectral image mixed noise removal based on multidirectional low-rank modeling and spatial– spectral total variation,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 488–507, 2020.
[23] Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, Y. Chen, and W. He, “Double- factor-regularized low-rank tensor factorization for mixed noise removal in hyperspectral image,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 12, pp. 8450–8464, 2020.
[24] D. Cerra, R. M ̈uller, and P. Reinartz, “Unmixing-based denoising for de- striping and inpainting of hyperspectral images,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2014, pp. 4620–4623.
[25] W. Xie and Y. Li, “Hyperspectral imagery denoising by deep learning with trainable nonlinearity function,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 11, pp. 1963–1967, 2017.
[26] Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 1205–1218, 2018.
[27] W. Dong, H. Wang, F. Wu, G. Shi, and X. Li, “Deep spatial–spectral repre- sentation learning for hyperspectral image denoising,” IEEE Trans. Comput. Imag., vol. 5, no. 4, pp. 635–648, 2019.
[28] Q. Shi, X. Tang, T. Yang, R. Liu, and L. Zhang, “Hyperspectral image denoising using a 3-d attention denoising network,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 12, pp. 10 348–10 363, 2021.
[29] K. Wei, Y. Fu, and H. Huang, “3-D quasi-recurrent neural network for hyper- spectral image denoising,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 363–375, 2020.
[30] F. Xiong, J. Zhou, Q. Zhao, J. Lu, and Y. Qian, “MAC-Net: Model aided nonlocal neural network for hyperspectral image denoising,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–14, 2021.
[31] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 9446–9454.
[32] O. Sidorov and J. Yngve Hardeberg, “Deep hyperspectral prior: Single-image denoising, inpainting, super-resolution,” in Proc. IEEE/CVF Int. Conf. Com- put. Vis. Workshop, 2019, pp. 3844–3851.
[33] H. V. Nguyen, M. O. Ulfarsson, and J. R. Sveinsson, “Hyperspectral image denoising using SURE-based unsupervised convolutional neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 4, pp. 3369–3382, 2020.
[34] J. Liu, Y. Sun, X. Xu, and U. S. Kamilov, “Image restoration using to- tal variation regularized deep image prior,” in Proc. IEEE ICASSP, 2019, pp. 7715–7719.
[35] Z. Sun, F. Latorre, T. Sanchez, and V. Cevher, “A plug-and-play deep image prior,” in Proc. IEEE ICASSP, 2021, pp. 8103–8107.
[36] G. Mataev, P. Milanfar, and M. Elad, “DeepRED: Deep image prior powered by RED,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops, 2019, pp. 1– 10.
[37] P. J. Huber, Robust Statistics. John Wiley & Sons, 2004, vol. 523.
[38] P. J. Huber, “Robust estimation of a location parameter,” in Breakthroughs in Statistics, Springer, 1992, pp. 492–518.
[39] H. Ye, H. Li, B. Yang, F. Cao, and Y. Tang, “A novel rank approximation method for mixture noise removal of hyperspectral images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 7, pp. 4457–4469, 2019.
[40] K. F. Niresi and C.-Y. Chi, “Unsupervised hyperspectral denoising based on deep image prior and least favorable distribution,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 5967–5983, 2022. doi: 10. 1109/JSTARS.2022.3187722.
[41] A. M. Zoubir, V. Koivunen, E. Ollila, and M. Muma, Robust Statistics for Signal Processing. Cambridge University Press, 2018.
[42] R. A. Maronna, R. D. Martin, V. J. Yohai, and M. Salibi ́an-Barrera, Robust Statistics: Theory and Methods (with R). John Wiley & Sons, 2019.
[43] P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection. John wiley & sons, 2005.
[44] C.-Y. Chi, W.-C. Li, and C.-H. Lin, Convex Optimization for Signal Process- ing and Communications: From Fundamentals to Applications. Boca Raton, FL, USA: CRC Press, 2017.
[45] T. Luki ́c, J. Lindblad, and N. Sladoje, “Regularized image denoising based on spectral gradient optimization,” Inverse Problems, vol. 27, no. 8, p. 085 010, 2011.
[46] P. Charbonnier, L. Blanc-F ́eraud, G. Aubert, and M. Barlaud, “Determinis- tic edge-preserving regularization in computed imaging,” IEEE Trans. Image Process., vol. 6, no. 2, pp. 298–311, 1997.
[47] D. Geman and G. Reynolds, “Constrained restoration and the recovery of discontinuities,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 3, pp. 367–383, 1992.
[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2015, pp. 1–15.
[49] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.
[50] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch nor- malization help optimization?” In Proc. 32nd International Conference on Neural Information Processing Systems, 2018, pp. 2488–2498.
[51] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., “Rectifier nonlinearities improve neural network acoustic models,” in Proc. ICML, 2013, pp. 1–6.
[52] Y.-C. Chen, C. Gao, E. Robb, and J.-B. Huang, “NAS-DIP: Learning deep image prior with neural architecture search,” arXiv preprint arXiv:2008.11713, 2020.
[53] B. Rasti, M. O. Ulfarsson, and P. Ghamisi, “Automatic hyperspectral im- age restoration using sparse and low-rank modeling,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 12, pp. 2335–2339, 2017.
[54] L. Zhuang, X. Fu, M. K. Ng, and J. M. Bioucas-Dias, “Hyperspectral im- age denoising based on global and nonlocal low-rank factorizations,” IEEE Trans. Geosci. Remote Sens., vol. 59, no. 12, pp. 10 438–10 454, 2021.
[55] L. Zhuang and M. K. Ng, “FastHyMix: Fast and parameter-free hyperspec- tral image mixed noise removal,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–15, 2021. doi: 10.1109/TNNLS.2021.3112577.
[56] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical Poissonian- Gaussian noise modeling and fitting for single-image raw-data,” IEEE Trans. Image Process., vol. 17, no. 10, pp. 1737–1754, 2008.
[57] K. Zhang, W. Zuo, and L. Zhang, “FFDNet: Toward a fast and flexible solu- tion for CNN-based image denoising,” IEEE Trans. Image Process., vol. 27, no. 9, pp. 4608–4622, 2018.
[58] R. Oten and R. J. de Figueiredo, “Adaptive alpha-trimmed mean filters under deviations from assumed noise model,” IEEE Trans. Image Process., vol. 13, no. 5, pp. 627–639, 2004.
[59] T. Plotz and S. Roth, “Benchmarking denoising algorithms with real pho- tographs,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2017, pp. 1586–1595.
[60] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al., “Pytorch: An imperative style, high-performance deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 8026–8037.
[61] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality as- sessment: From error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612, 2004.
[62] F. A. Kruse, A. Lefkoff, J. Boardman, et al., “The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrom- eter data,” Remote Sens. Environ., vol. 44, pp. 145–163, 1993.
[63] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity index for image quality assessment,” IEEE Trans. Image Process., vol. 20, no. 8, pp. 2378–2386, 2011.
[64] E. J. Cand`es, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” Journal of the ACM (JACM), vol. 58, no. 3, pp. 1–37, 2011.
[65] M. Burger, S. Osher, J. Xu, and G. Gilboa, “Nonlinear inverse scale space methods for image restoration,” in Proc. International Workshop on Vari- ational, Geometric, and Level Set Methods in Computer Vision, Springer, 2005, pp. 25–36.
[66] Z. Cheng, M. Gadelha, S. Maji, and D. Sheldon, “A Bayesian perspective on the deep image prior,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 5443–5451.
[67] H. Wang, T. Li, Z. Zhuang, T. Chen, H. Liang, and J. Sun, “Early stopping for deep image prior,” arXiv preprint arXiv:2112.06074, 2021.
[68] Y. Jo, S. Y. Chun, and J. Choi, “Rethinking deep image prior for denoising,” in Proc. IEEE Int. Conf. Comput. Vis., 2021, pp. 5087–5096.
[69] J. D’Errico, Inpainting Nan Elements in 3-D. Natick. MA, USA: MathWorks, MATLAB Central File Exchange, 2008. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/21214-inpainting- nan-elements-in-3-d.
[70] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095, 2007.
[71] C. Lu, X. Peng, and Y. Wei, “Low-rank tensor completion with a new tensor nuclear norm induced by invertible linear transforms,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 5996–6004.
[72] C.-H. Lin, Y.-C. Lin, and P.-W. Tang, “ADMM-ADAM: A new inverse imag- ing framework blending the advantages of convex optimization and deep learning,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–16, 2022. doi: 10.1109/TGRS.2021.3111007. |