帳號:guest(3.145.100.111)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王佳友
作者(外文):Wang, Jia-You
論文名稱(中文):基於氮化鎵高速電子遷移率電晶體的毫米波和亞太赫茲單晶積體電路振盪器
論文名稱(外文):Millimeter-Wave and Sub-Terahertz MMIC Oscillators Based on GaN HEMT Technologies
指導教授(中文):徐碩鴻
黃漪
指導教授(外文):Hsu, Shuo-Hung
Huang, Yi
口試委員(中文):徐永珍
劉怡君
章殷誠
周加峰
李衝
口試委員(外文):Hsu, Yung-Jane
Liu, Yi-Chun
Chang, Yin-Cheng
Zhou, Jiafeng
Li, Chong
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:109063859
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:110
中文關鍵詞:氮化鎵高速電子遷移率電晶體高功率振盪器毫米波亞太赫茲單晶積體電路
外文關鍵詞:GaN HEMTHigh-power oscillatorMillimeter-WaveSub-TeraherzMMIC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Millimeter-wave (mmWave) and Sub-terahertz (sub-THz) radar imaging and sensing have become major topics in recent years as they offer distinct advantages of non-hazardous radiation, large bandwidth, and high image resolution. Large power is needed to overcome the path loss, increase detection range, and refine image quality. Generating high-power and high-frequency signals is a challenging task. In recent years, gallium nitride (GaN) has emerged as a revolutionary solution against traditional methods with characteristics of high breakdown voltage and large electron saturation velocity under a high electric field. Thus, it holds promising status in generating high-power mmWave and sub-THz signals. This thesis focuses on developing GaN oscillators and signal sources for modern mmWave and sub-THz radar imaging and sensing, bringing out the potential of GaN-based oscillators and solving the accompanying challenges. A K-band cross-coupled oscillator with high power and high frequency relative to the maximum oscillation frequency is proposed using 0.25-µm GaN High Electron Mobility Transistors (HEMTs). A flipped transistor layout is designed and output matching network without buffer amplifiers is proposed to raise the oscillation frequency and obtain high output power (Pout). The proposed design achieves an oscillation frequency of 24.4 GHz which is the highest compared with the works using 0.25-μm GaN HEMT. The maximum Pout achieved is 16 dBm. To lower the phase noise (PN) of the oscillator, a single-transistor local feedback oscillator with a lumped LC reflection resonator at the Ka-band is proposed. A small-signal model of the transistor is developed to accurately predict frequency response under the proposed topology. A lump LC reflection resonator is designed with the local feedback topology to increase the quality factor and successfully lower the PN. This work uses the same 0.25-m GaN technology as the former work but realizes the oscillation at an even higher frequency of 31.3 GHz. A PN of -114 dBc/Hz at 1 MHz and -145 dBc/Hz at 10 MHz is achieved. To further elevate the Pout, a cascode oscillator using 0.15-µm GaN HEMTs is proposed. The cascode configuration improves the Pout, drain efficiency, and tuning range, generating 19.9-dBm measured Pout at 47.8 GHz. Furthermore, sub-THz oscillators and a sub-THz antenna are developed using 0.15-µm GaN HEMTs and gallium arsenide (GaAs) integrated passive device (IPD) technology. A push-push balanced Colpitts oscillator up to 110 GHz is demonstrated by using the parasitic gate-source capacitance as feedback capacitance. The design is further improved using the proposed coupled-line source degeneration to enhance the second harmonic current. In addition, load-pull at the output is conducted to perform maximum power matching for the second harmonic frequency. A simulated Pout of 16 dBm is realized at 99.4 GHz. Finally, a sub-THz antenna based on GaAs IPD is developed for the system-in-package radar system for integration with the GaN oscillators.
In summary, this thesis makes important contributions to the high-power and high-performance oscillators and signal sources based on GaN HEMT technology for modern radar imaging and sensing applications.
Acknowledgements i
Table of Contents ii
List of Figures iv
List of Tables viii
Abstract ix
List of Publications xi
Notations and Abbreviations xiii
Chapter 1. Introduction 1
1.1. Background 1
1.2. Research Motivation 2
1.3. Research Goals 6
1.4. Organization of the Thesis 6
Chapter 2. Literature Review 12
2.1. GaN HEMT Devices 12
2.1.1. Structural configuration 12
2.1.2. Frequency and power 13
2.1.3. Small-signal model 15
2.2. Review of GaN HEMT-Based Oscillators 17
2.2.1. Passive component characteristics 17
2.2.2. Oscillator designs 19
2.2.2.1. Basic high-frequency oscillator topology 19
2.2.2.2. Design consideration: Phase noise 21
2.2.2.3. Design consideration: Oscillation frequency 24
2.2.2.4. Design consideration: Tuning range 26
2.2.2.5. Design consideration: Output power 26
2.3. Summary 27
Chapter 3. K-Band Cross-Coupled Oscillator with High Output Power 36
3.1. Introduction 36
3.2. Introduction of the 0.25-μm GaN HEMT Technology 37
3.3. Topology of the K-Band Cross-Coupled Oscillator 37
3.4. Design of the Cross-Coupled Pair 38
3.5. Design of the Output Matching Network 40
3.6. Experimental Results 41
3.7. Summary 44
Chapter 4. Low-Phase Noise Ka-Band Local Feedback Oscillators 47
4.1. Introduction 47
4.2. Development of the Small-Signal Model 48
4.3. Design of the Common-Gate Local Feedback Oscillator 51
4.4. Design of the Local Feedback Oscillator with Varactor 56
4.5. Experimental Results 58
4.6. Summary 61
Chapter 5. V-band High-Power Cascode Oscillator 64
5.1. Introduction 64
5.2. Design of the Cascode Oscillator 65
5.2.1. Design of the first stage 67
5.2.2. Design of the second stage 70
5.3. Experimental Results 74
5.4. Summary 78
Chapter 6. Sub-THz Push-Push Oscillator Based on 0.15-µm GaN HEMTs 81
6.1. Introduction 82
6.2. Design of the Push-Push Sub-THz Oscillator 82
6.2.1. Push-push balanced Colpitts topology 83
6.2.2. Transistor technology and small-signal modelling 84
6.2.3. Oscillator design and optimization 86
6.2.4. Experimental results 89
6.3. Design of Coupled-Line Source Degeneration Push-Push Oscillator with Second Harmonic Power Matching 92
6.3.1. Design of coupled-line source degeneration 92
6.3.2. Maximum second harmonic extraction 96
6.4. Design of Sub-THz Cavity-Backed Folded Slot Antenna Using GaAs IPD 98
6.4.1. Introduction of the GaAs IPD technology 99
6.4.2. Antenna structure 100
6.4.3. Experimental results 102
6.5. Summary 103
Chapter 7. Conclusions and Future Work 107
7.1. Conclusion of this Thesis 107
7.2. Future Work 109
Chapter 1:
[1] Y. Huang, Y. Shen, and J. Wang, "From terahertz imaging to terahertz wireless communications". in Engineering, vol. 22, no., pp. 106-124, 2023.
[2] K. Fukunaga, Terahertz applications in art conservation, in Handbook of terahertz technology for imaging, sensing and communications, 2013, Woodhead Publishing. pp. 615-623.
[3] J. Rabkowski, D. Peftitsis, and H. P. Nee, "Silicon carbide power transistors: a new era in power electronics is initiated". in IEEE Industrial Electronics Magazine, vol. 6, no. 2, pp. 17-26, 2012.
[4] T. P. Chow. "Wide bandgap semiconductor power devices for energy efficient systems". in 2015 IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Blacksburg, VA, USA, 2015, pp. 402-405.
[5] A. Letellier, M. R. Dubois, J. P. Trovao, and H. Maher. "Gallium Nitride Semiconductors in Power Electronics for Electric Vehicles: Advantages and Challenges". in 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 2015, pp. 1-6.
[6] B. Y. Sun, R. Burgos, D. Boroyevich, S. Bala, and J. Xu. "10 kW high efficiency compact GaN-based DC/DC converter design". in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 6307-6313.
[7] S. Chowdhury, Z. Stum, Z. D. Li, K. Ueno, and T. P. Chow, "Comparison of 600V Si, SiC and GaN power devices". in Materials Science Forum, vol. 778-780, no., pp. 971-974, 2014.
[8] U. K. Mishra, L. Shen, T. E. Kazior, and W. Yi-Feng, "GaN-based RF power devices and amplifiers". in Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, 2008.
[9] U. K. Mishra, P. Parikh, and Y.-F. Wu, "AlGaN/GaN HEMTs-an overview of device operation and applications". in Proceedings of the IEEE, vol. 90, no. 6, pp. 1022-1031, 2002.
[10] B. Liu, K. Ma, H. Fu, K. Wang, and F. Meng, "Recent progress of silicon-based millimeter-wave SoCs for short-range radar imaging and sensing". in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 6, pp. 2667-2671, 2022.
[11] B. P. Ginsburg, K. Subburaj, S. Samala, K. Ramasubramanian, J. Singh, S. Bhatara, S. Murali, D. Breen, M. Moallem, K. Dandu, S. Jalan, N. Nayak, R. Sachdev, I. Prathapan, K. Bhatia, T. Davis, E. Seok, H. Parthasarathy, R. Chatterjee, V. Srinivasan, V. Giannini, A. Kumar, R. Kulak, S. Ram, P. Gupta, Z. Parkar, S. Bhardwaj, Y. C. Rakesh, K. A. Rajagopal, A. Shrimali, and V. Rentala. "A multimode 76-to-81GHz automotive radar transceiver with autonomous monitoring". in 2018 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2018, pp. 158-160.
[12] K. Dandu, S. Samala, K. Bhatia, M. Moallem, K. Subburaj, Z. Ahmad, D. Breen, S. Jang, T. Davis, M. Singh, S. Ram, V. Dudhia, M. DeWilde, D. Shetty, J. Samuel, Z. Parkar, C. Chi, P. Loya, Z. Crawford, J. Herrington, R. Kulak, A. Daga, R. Raavi, R. Teja, R. Veettil, D. Khemraj, I. Prathapan, P. Narayanan, N. Narayanan, S. Anandwade, J. Singh, V. Srinivasan, N. Nayak, K. Ramasubramanian, B. Ginsburg, and V. Rentala. "High-performance and small form-factor mm-wave CMOS radars for automotive and industrial sensing in 76-to-81GHz and 57-to-64GHz bands". in 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2021, pp. 39-41.
[13] V. Giannini, M. Goldenberg, A. Eshraghi, J. Maligeorgos, L. Lim, R. Lobo, D. Welland, C. K. Chow, A. Dornbusch, T. Dupuis, S. Vaz, F. Rush, P. Bassett, H. Kim, M. Maher, O. Schmid, C. Davis, and M. Hegde. "A 192-virtual-receiver 77/79GHz GMSK code-domain mimo radar system-on-chip". in 2019 IEEE International Solid-State Circuits Conference (ISSCC), 2019, pp. 164-166.
[14] W. Lee, T. Dinc, and A. Valdes-Garcia, "Multi-mode 60-GHz radar transmitter SoC in 45-nm SOI CMOS". in IEEE Journal of Solid-State Circuits, vol. 55, no. 5, pp. 1187-1198, 2020.
[15] H. C. Kuo, C. C. Lin, C. H. Yu, P. H. Lo, J. Y. Lyu, C. C. Chou, and H. R. Chuang, "A fully integrated 60-GHz CMOS direct-conversion doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection". in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 4, pp. 1018-1028, 2016.
[16] X. J. Ma, Y. Y. Wang, L. Lu, X. X. Zhang, Q. Chen, X. H. You, J. S. Lin, and L. M. Li, "Design of a 100-GHz double-sideband low-IF CW doppler radar transceiver for micrometer mechanical vibration and vital sign detection". in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 2876-2890, 2020.
[17] A. Visweswaran, K. Vaesen, M. Glassee, A. Kankuppe, S. Sinha, C. Desset, T. Gielen, A. Bourdoux, and P. Wambacq, "A 28-nm-CMOS based 145-GHz FMCW radar: system, circuits, and characterization". in IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 1975-1993, 2021.
[18] S. Lee, S. Hara, T. Yoshida, S. Amakawa, R. Dong, A. Kasamatsu, J. Sato, and M. Fujishima, "An 80-Gb/s 300-GHz-band single-chip CMOS transceiver". in IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3577-3588, 2019.
[19] K. Guo, A. Standaert, and P. Reynaert, "A 525–556-GHz radiating source with a dielectric lens antenna in 28-nm CMOS". in IEEE Transactions on Terahertz Science and Technology, vol. 8, no. 3, pp. 340-349, 2018.
[20] A. Standaert and P. Reynaert, "A 400-GHz 28-nm TX and RX with chip-to-waveguide transitions used in fully integrated lensless imaging system". in IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 4, pp. 373-382, 2019.
[21] I. Nasr, R. Jungmaier, A. Baheti, D. Noppeney, J. S. Bal, M. Wojnowski, E. Karagozler, H. Raja, J. Lien, I. Poupyrev, and S. Trotta, "A highly integrated 60 GHz 6-channel transceiver with antenna in package for smart sensing and short-range communications". in IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2066-2076, 2016.
[22] J. Grzyb, Z. Yan, and U. R. Pfeiffer, "A 288-GHz lens-integrated balanced triple-push source in a 65-nm CMOS technology". in IEEE Journal of Solid-State Circuits, vol. 48, no. 7, pp. 1751-1761, 2013.
[23] D. R. Utomo, D.-W. Park, S.-G. Lee, and J.-P. Hong, "High-power 268-GHz push-push transformer-based oscillator with capacitive degeneration". in IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, pp. 612-614, 2018.
[24] H. Koo, C.-Y. Kim, and S. Hong, "Design and analysis of 239 GHz CMOS push-push transformer-based VCO With high efficiency and wide tuning range". in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 7, pp. 1883-1893, 2015.
[25] A. Al-Khalidi, K. H. Alharbi, J. Wang, R. Morariu, L. Wang, A. Khalid, J. M. L. Figueiredo, and E. Wasige, "Resonant Tunneling Diode Terahertz Sources With up to 1 mW Output Power in the J-Band". in IEEE Transactions on Terahertz Science and Technology, vol. 10, no. 2, pp. 150-157, 2020.
[26] M. Kim, J. Lee, J. Lee, and K. Yang, "A 675 GHz Differential Oscillator Based on a Resonant Tunneling Diode". in IEEE Transactions on Terahertz Science and Technology, vol. 6, no. 3, pp. 510-512, 2016.
[27] J. Park, J. Lee, K. Lee, and K. Yang, "A 0.71-pJ/b ON-OFF Keying $K$ -Band Oscillator Using an InP-Based Resonant Tunneling Diode". in IEEE Microwave and Wireless Components Letters, vol. 27, no. 7, pp. 660-662, 2017.
[28] H. Kroemer, "Theory of the Gunn effect". in Proceedings of the IEEE, vol. 52, no. 12, pp. 1736-1736, 1964.
[29] A. Khalid, N. J. Pilgrim, G. M. Dunn, M. C. Holland, C. R. Stanley, I. G. Thayne, and D. R. S. Cumming, "A planar Gunn diode operating above 100 GHz". in IEEE Electron Device Letters, vol. 28, no. 10, pp. 849-851, 2007.
[30] H. Eisele, A. Rydberg, and G. I. Haddad, "Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above". in IEEE Transactions on Microwave Theory and Techniques, vol. 48, no. 4, pp. 626-631, 2000.
[31] A. Khalid, C. Li, V. Papageogiou, G. M. Dunn, M. J. Steer, I. G. Thayne, M. Kuball, C. H. Oxley, M. Montes Bajo, A. Stephen, J. Glover, and D. R. S. Cumming, "In0.53Ga0.47As planar Gunn diodes operating at a fundamental frequency of 164 GHz". in IEEE Electron Device Letters, vol. 34, no. 1, pp. 39-41, 2013.
[32] L. Huo, R. Lingaparthi, K. Shabdurasulov, N. Dharmarasu, K. Radhakrishnan, S. García-Sánchez, and J. Mateos. "THz oscillation in Doped-GaN based planar Gunn diode with the T-shape channel". in 2023 18th European Microwave Integrated Circuits Conference (EuMIC), 2023, pp. 289-292.
[33] E. S. Hellman, "The polarity of GaN: a critical review". in MRS Internet Journal of Nitride Semiconductor Research, vol. 3, no., pp. e11, 1998.
[34] P. M. Asbeck, Chapter One - Electronic properties of III-nitride materials and basics of III-nitride FETs, in Semiconductors and Semimetals, 2019, Elsevier. pp. 1-40.
[35] U. K. Mishra, L. Shen, T. E. Kazior, and Y. Wu, "GaN-Based RF Power Devices and Amplifiers". in Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, 2008.
[36] D. Kim and S. Jeon, "W- and G-Band GaN voltage-controlled oscillators with high output power and high efficiency". in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 8, pp. 3908-3916, 2021.
[37] U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Forster, H. Rucker, and B. Heinemann, "A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications". in IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2938-2950, 2014.
[38] W. Steyaert and P. Reynaert. "A THz signal source with integrated antenna for non-destructive testing in 28nm bulk CMOS". in 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC), Xiamen, China, 2015, pp. 1-4.
[39] P. Chen and A. Babakhani. "A 30GHz impulse radiator with on-chip antennas for high resolution 3D imaging". in 2015 IEEE Radio and Wireless Symposium (RWS), San Diego, CA, USA, 2015, pp. 32-34.


Chapter 2:
[1] J. J. Rosenberg, M. Benlamri, P. D. Kirchner, J. M. Woodall, and G. D. Pettit, "An In0.15Ga0.85As/GaAs pseudomorphic single quantum well HEMT". in IEEE Electron Device Letters, vol. 6, no. 10, pp. 491-493, 1985.
[2] D. Streit, R. Lai, A. Oki, and A. Gutierrez-Aitken. "InP HEMT and HBT applications beyond 200 GHz". in 14th Indium Phosphide and Related Materials Conference (IPRM), Stockholm, Sweden, 2002, pp. 11-14.
[3] W. A. Melton and J. I. Pankove, "GaN growth on sapphire". in Journal of Crystal Growth, vol. 178, no. 1-2, pp. 168-173, 1997.
[4] C. Y. Chan, T. C. Lee, S. S. H. Hsu, L. Chen, and Y. S. Lin, "Impacts of gate recess and passivation on AlGaN/GaN high electron mobility transistors". in Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, no. 2, pp. 478-484, 2007.
[5] Y. W. Lian, Y. S. Lin, H. C. Lu, Y. C. Huang, and S. S. H. Hsu, "AlGaN/GaN HEMTs on silicon with hybrid schottky-ohmic drain for high breakdown voltage and low leakage current". in IEEE Electron Device Letters, vol. 33, no. 7, pp. 973-975, 2012.
[6] F. Lecourt, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, M. Eickelkamp, A. Vescan, C. Giesen, M. Heuken, and J. C. De Jaeger, "InAlN/GaN HEMTs on sapphire substrate with 2.9-W/mm output power density at 18 GHz". in IEEE Electron Device Letters, vol. 32, no. 11, pp. 1537-1539, 2011.
[7] J. Blevins, G. Via, K. Sutherlin, S. Tetlak, B. Poling, R. Gilbert, B. Moore, J. Hoelscher, B. Stumpff, and A. Bar-Cohen. "Recent progress in GaN-on-diamond device technology". in Proceeding of CS MANTECH Conference, 2014, pp. 105-108.
[8] A. Taube, M. Kaminski, J. Tarenko, O. Sadowski, M. Ekielski, A. Szerling, P. Prystawko, M. Bockowski, and I. Grzegory, "High breakdown voltage and high current injection vertical GaN-on-GaN p-n diodes with extremely low on-resistance fabricated on ammonothermally grown bulk GaN substrates". in IEEE Transactions on Electron Devices, vol. 69, no. 11, pp. 6255-6259, 2022.
[9] D. Zhang, X. Cheng, W. T. Ng, L. Shen, L. Zheng, Q. Wang, R. Qian, Z. Gu, D. Wu, W. Zhou, H. Zhu, and Y. Yu, "Reliability improvement of GaN devices on free-standing GaN substrates". in IEEE Transactions on Electron Devices, vol. 65, no. 8, pp. 3379-3387, 2018.
[10] M. C. Group. GaN wafer (GaN substrate). [cited 2024; Available from: https://www.m-chemical.co.jp/en/products/departments/mcc/nes/product/1201029_9004.html.
[11] J. W. McClory, The effect of radiation on the electrical properties of aluminum gallium nitride/gallium nitride heterostructures, ed. 2008, Ohio, United States: Air Force Institute of Technology.
[12] D. C. Dumka, T. M. Chou, F. Faili, D. Francis, and F. Ejeckam, "AlGaN/GaN HEMTs on diamond substrate with over 7W/mm output power density at 10 GHz". in Electronics Letters, vol. 49, no. 20, pp. 1298-1299, 2013.
[13] W. Wang, X. X. Yu, J. J. Zhou, D. J. Chen, K. Zhang, C. Kong, Y. C. Kong, Z. H. Li, and T. S. Chen, "Improvement of power performance of GaN HEMT by using quaternary InAlGaN barrier". in IEEE Journal of the Electron Devices Society, vol. 6, no. 1, pp. 360-364, 2018.
[14] J. S. Moon, R. Grabar, J. Wong, M. Antcliffe, P. Chen, E. Arkun, I. Khalaf, A. Corrion, J. Chappell, N. Venkatesan, and P. Fay, "High-speed graded-channel AlGaN/GaN HEMTs with power added efficiency >70% at 30 GHz". in Electronics Letters, vol. 56, no. 13, pp. 678-679, 2020.
[15] Y. Tang, K. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, A. Schmitz, H. Fung, S. Kim, and M. Micovic, "Ultrahigh-speed GaN high-electron-mobility transistors with fT/fmax of 454/444 GHz". in IEEE Electron Device Letters, vol. 36, no. 6, pp. 549-551, 2015.
[16] M. Bauer, A. Ramer, S. A. Chevtchenko, K. Y. Osipov, D. Cibiraite, S. Pralgauskaite, K. Ikamas, A. Lisauskas, W. Heinrich, V. Krozer, and H. G. Roskos, "A high-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna". in IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 4, pp. 430-444, 2019.
[17] K. Shinohara, D. C. Regan, Y. Tang, A. L. Corrion, D. F. Brown, J. C. Wong, J. F. Robinson, H. H. Fung, A. Schmitz, T. C. Oh, S. J. Kim, P. S. Chen, R. G. Nagele, A. D. Margomenos, and M. Micovic, "Scaling of GaN HEMTs and schottky diodes for submillimeter-wave MMIC applications". in IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 2982-2996, 2013.
[18] K. Shinohara, D. Regan, I. Milosavljevic, A. L. Corrion, D. F. Brown, P. J. Willadsen, C. Butler, A. Schmitz, S. Kim, V. Lee, A. Ohoka, P. M. Asbeck, and M. Micovic, "Electron velocity enhancement in laterally scaled GaN DH-HEMTs with f(T) of 260 GHz". in IEEE Electron Device Letters, vol. 32, no. 8, pp. 1074-1076, 2011.
[19] Y. Z. Yue, Z. Y. Hu, J. Guo, B. Sensale-Rodriguez, G. W. Li, R. H. Wang, F. Faria, T. Fang, B. Song, X. Gao, S. P. Guo, T. Kosel, G. Snider, P. Fay, D. Jena, and H. L. Xing, "InAlN/AlN/GaN HEMTs with regrown ohmic contacts and f(T) of 370 GHz". in IEEE Electron Device Letters, vol. 33, no. 7, pp. 988-990, 2012.
[20] K. Shinohara, D. Regan, A. Corrion, D. Brown, Y. Tang, J. Wong, G. Candia, A. Schmitz, H. Fung, S. Kim, and M. Micovic. "Self-aligned-gate GaN-HEMTs with heavily-doped n(+)-GaN ohmic contacts to 2DEG". in 2012 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2012, pp. 27.22.21-27.22.24.
[21] D. Denninghoff, J. Lu, E. Ahmadi, S. Keller, and U. K. Mishra. "N-polar GaN/InAlN/AlGaN MIS-HEMTs with 1.89 S/mm extrinsic transconductance, 4 A/mm drain current, 204 GHz f(T) and 405 GHz f(max)". in 2013 71st Annual Device Research Conference (DRC), 2013, pp. 197-198.
[22] J.-S. Moon, J. Wong, B. Grabar, M. Antcliffe, P. Chen, E. Arkun, I. Khalaf, A. Corrion, J. Chappell, N. Venkatesan, and P. Fay, "360 GHz fMAX graded-channel AlGaN/GaN HEMTs for mmW low-noise applications". in IEEE Electron Device Letters, vol. 41, no. 8, pp. 1173-1176, 2020.
[23] L. Li, K. Nomoto, M. Pan, W. Li, A. Hickman, J. Miller, K. Lee, Z. Hu, S. J. Bader, S. M. Lee, J. C. M. Hwang, D. Jena, and H. G. Xing, "GaN HEMTs on Si with regrown contacts and cutoff/maximum oscillation frequencies of 250/204 GHz". in IEEE Electron Device Letters, vol. 41, no. 5, pp. 689-692, 2020.
[24] M. L. Schuette, A. Ketterson, B. Song, E. Beam, T.-M. Chou, M. Pilla, H.-Q. Tserng, X. Gao, S. Guo, P. J. Fay, H. G. Xing, and P. Saunier, "Gate-recessed integrated E/D GaN HEMT technology with fT/fmax >300 GHz". in IEEE Electron Device Letters, vol. 34, no. 6, pp. 741-743, 2013.
[25] S. Bouzid-Driad, H. Maher, N. Defrance, V. Hoel, J. C. De Jaeger, M. Renvoise, and P. Frijlink, "AlGaN/GaN HEMTs on silicon substrate with 206-GHz FMAX". in IEEE Electron Device Letters, vol. 34, no. 1, pp. 36-38, 2013.
[26] A. Jarndal and G. Kompa, "A new small-signal modeling approach applied to GaN devices". in IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 11, pp. 3440-3448, 2005.
[27] G. Crupi, D. Xiao, D. M. M. P. Schreurs, E. Limiti, A. Caddemi, W. De Raedt, and M. Germain, "Accurate multibias equivalent-circuit extraction for GaN HEMTs". in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 10, pp. 3616-3622, 2006.
[28] R. G. Brady, C. H. Oxley, and T. J. Brazil, "An improved small-signal parameter-extraction algorithm for GaN HEMT devices". in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 7, pp. 1535-1544, 2008.
[29] D. Schwantuschke, M. Seelmann-Eggebert, P. Brückner, R. Quay, M. Mikulla, O. Ambacher, and I. Kallfass. "A fully scalable compact small-signal modeling approach for 100 nm AlGaN/GaN HEMTs". in 2013 8th European Microwave Integrated Circuits Conference (EUMIC), 2013, pp. 284-287.
[30] R. Q. D. Schwantuschke; M. Seelmann-Eggebert; P. Brückner, M. Mikulla and O. Ambacher, "A fully scalable compact Small-Signal Modeling approach for 100 nm AlGaN GaN HEMTs". in Proceedings of the 8th European Microwave Integrated Circuits Conference, vol., no., 2013.
[31] V. Tigadi. Impact of phase noise in signal generators. 2012 2012/08/21; Available from: https://www.edn.com/impact-of-phase-noise-in-signal-generators/.
[32] S. L. J. Y.-H. C. W.-C. Lai. "A feedback GaN HEMT oscillator". in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 2018, pp. 1-3.
[33] J. Y. Wang, Y. Huang, Y. C. Chang, Y. K. Liu, D. C. Chang, and S. S. H. Hsu, "A k-band MMIC cross-coupled oscillator with high output power in 0.25-um GaN HEMT". in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 8, pp. 1211-1214, 2023.
[34] T. N. T. Do, M. Horberg, S. Lai, and D. Kuylenstierna. "Low frequency noise measurements - a technology benchmark with target on oscillator applications". in 44th European Microwave Conference (EUMC), Rome, Italy, 2014, pp. 1412-1415.
[35] K. Takakura, V. Putcha, E. Simoen, A. R. Alian, U. Peralagu, N. Waldron, B. Parvais, and N. Collaert, "Low-frequency noise investigation of GaN/AlGaN metal-oxide-semiconductor high-electron-mobility field-effect transistor with different gate length and orientation". in IEEE Transactions on Electron Devices, vol. 67, no. 8, pp. 3062-3068, 2020.
[36] Y. Q. Chen, Y. C. Zhang, Y. Liu, X. Y. Liao, Y. F. En, W. X. Fang, and Y. Huang, "Effect of hydrogen on defects of AlGaN/GaN HEMTs characterized by low-frequency noise". in IEEE Transactions on Electron Devices, vol. 65, no. 4, pp. 1321-1326, 2018.
[37] P. Wang, R. Jiang, J. Chen, E. X. Zhang, M. W. McCurdy, R. D. Schrimpf, and D. M. Fleetwood, "1/f Noise in as-processed and proton-irradiated AlGaN/GaN HEMTs due to carrier number fluctuations". in IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 181-189, 2017.
[38] A. V. Vertiatchikh and L. F. Eastman, "Effect of the surface and barrier defects on the AlGaN/GaN HEMT low-frequency noise performance". in IEEE Electron Device Letters, vol. 24, no. 9, pp. 535-537, 2003.
[39] Nidhi, T. Palacios, A. Chakraborty, S. Keller, and U. K. Mishra, "Study of impact of access resistance on high-frequency performance of AlGaN/GaN HEMTs by measurements at low temperatures". in IEEE Electron Device Letters, vol. 27, no. 11, pp. 877-880, 2006.
[40] H. R. Qie, J. X. Liu, Q. Li, Q. Sun, H. W. Gao, X. J. Sun, Y. Zhou, and H. Yang, "Selective area epitaxy of degenerate n-GaN for HEMT ohmic contact by MOCVD". in Applied Physics Letters, vol. 121, no. 21, 2022.
[41] M. H. Weng, C. K. Lin, J. H. Du, W. C. Wang, W. K. Wang, and W. Wohlmuth. "Pure play GaN foundry 0.25 um HEMT technology for RF applications". in 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS): , Monterey, CA, USA, 2013, pp. 1-4.
[42] G. Guillermo, Foundations of oscillator circuit design, ed. 2006: Artech.
[43] R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, M. Mikulla, O. Ambacher, and I. Kallfass, "A 67 GHz GaN voltage-controlled oscillator MMIC with high output power". in IEEE Microwave and Wireless Components Letters, vol. 23, no. 7, pp. 374-376, 2013.
[44] V. S. Kaper, V. Tilak, K. Hyungtak, A. V. Vertiatchikh, R. M. Thompson, T. R. Prunty, L. F. Eastman, and J. R. Shealy, "High-power monolithic AlGaN/GaN HEMT oscillator". in IEEE Journal of Solid-State Circuits, vol. 38, no. 9, pp. 1457-1461, 2003.
[45] C. Sanabria, X. Hongtao, S. Heikman, U. K. Mishra, and R. A. York, "A GaN differential oscillator with improved harmonic performance". in IEEE Microwave and Wireless Components Letters, vol. 15, no. 7, pp. 463-465, 2005.
[46] B. W. Bahr, L. C. Popa, and D. Weinstein. "1 GHz GaN MMIC monolithically integrated MEMS based oscillators". in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, San Francisco, CA, USA, 2015, pp. 1-3.
[47] H. Liu, X. Zhu, C. C. Boon, X. Yi, M. Mao, and W. Yang, "Design of ultra-low phase noise and high power integrated oscillator in 0.25 um GaN-on-SiC HEMT technology". in IEEE Microwave and Wireless Components Letters, vol. 24, no. 2, pp. 120-122, 2014.
[48] C.-C. Chuang and H.-K. Chiou. "A low phase noise X band class E power VCO In 0.25 um GaN/SiC technology". in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-3.
[49] S. Lai, D. Kuylenstierna, M. Ozen, M. Horberg, N. Rorsman, I. Angelov, and H. Zirath, "Low phase noise GaN HEMT oscillators with excellent figures of merit". in IEEE Microwave and Wireless Components Letters, vol. 24, no. 6, pp. 412-414, 2014.
[50] M. Hӧrberg, D. Kuylenstiema, and E. AB. "Low phase noise power-efficient MMIC GaN-HEMT Oscillator at 15 GHz based on a Quasi-lumped on-chip resonator". in 2015 IEEE MTT-S International Microwave Symposium (IMS), Phoenix, AZ, USA, 2015, pp. 1-4.
[51] T. N. T. Do, S. Lai, M. Horberg, H. Zirath, and D. Kuylenstierna. "A MMIC GaN HEMT voltage-controlled-oscillator with high tuning linearity and low phase noise". in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, USA, 2015, pp. 1-4.
[52] M. Horberg, T. Emanuelsson, P. Ligander, S. Lai, H. Zirath, and D. Kuylenstierna, "RF-MEMS tuned GaN HEMT based cavity oscillator for X-band". in IEEE Microwave and Wireless Components Letters, vol. 27, no. 1, pp. 46-48, 2017.
[53] D. Kim and S. Jeon, "W- and G-Band GaN voltage-controlled oscillators with high output power and high efficiency". in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 8, pp. 3908-3916, 2021.
[54] J. Wang, Y. C. Chang, Y. Liu, S. H. Li, D. C. Chang, Y. Huang, and S. S. H. Hsu. "A 110-GHz push-push balanced colpitts oscillator using 0.15-μm GaN HEMT technology". in 2023 IEEE/MTT-S International Microwave Symposium (IMS), San Diego, CA, USA, 2023, pp. 77-80.
[55] W. Lu, L. Q. Wang, S. Y. Gu, P. M. Asbeck, and P. K. L. Yu, Critical design considerations for GaN-based microwave power varactors, in 2012 IEEE International conference on electron devices and solid state circuit (EDSSC). 2012.
[56] C. San Chu, Y. G. Zhou, K. J. Chen, and K. M. Lau, "Q-factor characterization of RF GaN-based metal-semiconductor-metal planar interdigitated varactor". in IEEE Electron Device Letters, vol. 26, no. 7, pp. 432-434, 2005.
[57] K. Cen, L. Hui, C. Xiaojian, J. Shuwen, Z. Jianjun, and C. Chen, "A monolithic AlGaN/GaN HEMT VCO using BST thin-film varactor". in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3413-3419, 2012.
[58] A. Hamdoun, L. Roy, M. Himdi, and O. Lafond. "Characterization of GaN-based HEMTs as varactor diode devices". in 2015 10th European Microwave Integrated Circuits Conference (EuMIC), 2015, pp. 417-420.
[59] P. Palacios, M.-D. Wei, T. Zweipfennig, A. Hamed, C. Beckmann, H. Kalisch, A. Vescan, and R. Negra, "AlGaN GaN high electron mobility transistor oscillator for high temperature and high frequency". in Electronics Letters, vol. 57, no., pp. 148-150, 2021.
[60] R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, F. v. Raay, and O. Ambacher. "A 92 GHz GaN HEMT voltage-controlled oscillator MMIC". in 2014 IEEE MTT-S International Microwave Symposium (IMS), Tampa, Florida, USA, 2014, pp. 1-4.
[61] H.-L. Kao, "On-chip voltage-controlled oscillator based on a center-tapped switched inductor using GaN-on-SiC HEMT technology". in Electronics, vol. 10, no. 23, pp. 2928, 2021.
[62] H. T. Xu, C. Sanabria, S. Heikman, S. Keller, U. K. Mishra, and R. A. York. "High power GaN oscillators using field-plated HEMT structure". in 2005 IEEE MTT-S International Microwave Symposium, Long Beach, CA, USA, 2005, pp. 1345-1348.
[63] Y. Nakasha, S. Masuda, K. Makiyama, T. Ohki, M. Kanamura, N. Okamoto, T. Tajima, T. Seino, H. Shigematsu, K. Imanishi, T. Kikkawa, K. Joshin, and N. Hara. "E-band 85-mW oscillator and 1.3-W amplifier ICs using 0.12um GaN HEMTs for mmw transceivers". in 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, 2010, pp. 1-4.

Chapter 3:
[1] E. Alyammahi, M. Alhanaee, A. Alameeri, R. Almeqbaly, M. Alhosani, D. Alzahmi, M. A. Abou-Khousa, B. Mohammad, and K. Alwahedi. "Remote heart rate monitoring using K-band Doppler radar". in 2022 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 2022, pp. 211-215.
[2] H. Öztürk and K. Yeğin. "Predistorter based K-band FMCW radar for vehicle speed detection". in 2016 17th International Radar Symposium (IRS), Krakow, Poland, 2016, pp. 1-4.
[3] G. Pyo and S. Hong. "A single-chip K-band CMOS FMCW radar transceiver". in 2015 Global Symposium on Millimeter-Waves (GSMM), Montreal, Quebec, Canada, 2015, pp. 1-3.
[4] H. Liu, X. Zhu, C. C. Boon, X. Yi, M. Mao, and W. Yang, "Design of ultra-low phase noise and high power integrated oscillator in 0.25 um GaN-on-SiC HEMT technology". in IEEE Microwave and Wireless Components Letters, vol. 24, no. 2, pp. 120-122, 2014.
[5] S. Lai, D. Kuylenstierna, M. Horberg, N. Rorsman, I. Angelov, K. Andersson, and H. Zirath, "Accurate phase-noise prediction for a balanced colpitts GaN HEMT MMIC oscillator". in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 11, pp. 3916-3926, 2013.
[6] C.-C. Chuang and H.-K. Chiou. "A low phase noise X band class E power VCO In 0.25 um GaN/SiC technology". in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-3.
[7] M. H. Weng, C. K. Lin, J. H. Du, W. C. Wang, W. K. Wang, and W. Wohlmuth. "Pure play GaN foundry 0.25 um HEMT technology for RF applications". in 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS): , Monterey, CA, USA, 2013, pp. 1-4.
[8] T. Chuan-Wei, L. Chen-Yi, L. Yi-Wei, and S. S. H. Hsu, "101-GHz InAlN/GaN HEMTs on Silicon with high johnson’s figure-of-merit". in IEEE Transactions on Electron Devices, vol. 62, no. 8, pp. 2675-2678, 2015.
[9] P.-Y. Wang, G.-Y. Su, Y.-C. Chang, D.-C. Chang, and S. S. H. Hsu, "A transformer-based current-reuse QVCO with an FoM Up to −200.5 dBc/Hz". in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 6, pp. 749-753, 2018.
[10] R. S. Pengelly, S. M. Wood, J. W. Milligan, S. T. Sheppard, and W. L. Pribble, "A review of GaN on SiC high electron-mobility power transistors and MMICs". in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1764-1783, 2012.
[11] D. Kim and S. Jeon, "W- and G-Band GaN voltage-controlled oscillators with high output power and high efficiency". in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 8, pp. 3908-3916, 2021.
[12] M. Hӧrberg, D. Kuylenstiema, and E. AB. "Low phase noise power-efficient MMIC GaN-HEMT Oscillator at 15 GHz based on a Quasi-lumped on-chip resonator". in 2015 IEEE MTT-S International Microwave Symposium (IMS), Phoenix, AZ, USA, 2015, pp. 1-4.
[13] S. L. J. Y.-H. C. W.-C. Lai. "A feedback GaN HEMT oscillator". in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 2018, pp. 1-3.
[14] T. N. T. Do, S. Lai, M. Horberg, H. Zirath, and D. Kuylenstierna. "A MMIC GaN HEMT voltage-controlled-oscillator with high tuning linearity and low phase noise". in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, USA, 2015, pp. 1-4.

Chapter 4:
[1] S. Emekar, J. Jha, S. Mukherjee, M. Meer, K. Takhar, D. Saha, and S. Ganguly. "Modified angelov model for an exploratory GaN-HEMT technology with short few-fingered gates ". in 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kamakura, Japan, 2017, pp. 117-120.
[2] D. B. Leeson, "A simple model of feedback oscillator noise spectrum". in Proceedings of the IEEE, vol. 54, no. 2, pp. 329-330, 1966.
[3] D. Kim and S. Jeon, "W- and G-Band GaN voltage-controlled oscillators with high output power and high efficiency". in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 8, pp. 3908-3916, 2021.
[4] T. N. T. Do, M. Bao, Z. S. He, A. Hassona, D. Kuylenstierna, and H. Zirath, "A low-phase noise D-band signal source based on 130 nm SiGe BiCMOS and 0.15 µm AlGaN/GaN HEMT technologies". in International Journal of Microwave and Wireless Technologies, vol. 11, no. 5-6, pp. 456-465, 2019.
[5] T. N. Thi Do, Y. Yan, and D. Kuylenstierna. "A low phase noise W-band MMIC GaN HEMT oscillator". in 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 2020, pp. 113-115.
[6] C.-C. Chuang and H.-K. Chiou. "A low phase noise X band class E power VCO In 0.25 um GaN/SiC technology". in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-3.
[7] H. Zirath, L. Szhau, D. Kuylenstierna, J. Felbinger, K. Andersson, and N. Rorsman. "An X-Band low phase noise AlGaN-GaN-HEMT MMIC push-push oscillator". in 2011 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Waikoloa, HI, USA, 2011, pp. 1-4.
[8] M. Hӧrberg, D. Kuylenstiema, and E. AB. "Low phase noise power-efficient MMIC GaN-HEMT Oscillator at 15 GHz based on a Quasi-lumped on-chip resonator". in 2015 IEEE MTT-S International Microwave Symposium (IMS), Phoenix, AZ, USA, 2015, pp. 1-4.
[9] Mathworks. Levenberg-Marquardt backpropagation. Available from: https://web.archive.org/web/20201025224709/https://www.mathworks.com/help/deeplearning/ref/trainlm.html.
[10] H. Barkhausen, Lehrbuch der elektronen-röhren und ihrer technischen anwendungen, ed. 1935: S. Hirzel.
[11] S. L. J. Y.-H. C. W.-C. Lai. "A feedback GaN HEMT oscillator". in 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 2018, pp. 1-3.
[12] H. Liu, X. Zhu, C. C. Boon, X. Yi, M. Mao, and W. Yang, "Design of ultra-low phase noise and high power integrated oscillator in 0.25 um GaN-on-SiC HEMT technology". in IEEE Microwave and Wireless Components Letters, vol. 24, no. 2, pp. 120-122, 2014.
[13] J. Y. Wang, Y. Huang, Y. C. Chang, Y. K. Liu, D. C. Chang, and S. S. H. Hsu, "A k-band MMIC cross-coupled oscillator with high output power in 0.25-um GaN HEMT". in IEEE Microwave and Wireless Technology Letters, vol. 33, no. 8, pp. 1211-1214, 2023.
[14] C.-L. Chang, C.-H. Tseng, and H.-Y. Chang, "A new monolithic Ka-band filter-based voltage-controlled oscillator Using 0.15 um GaAs pHEMT technology". in IEEE Microwave and Wireless Components Letters, vol. 24, no. 2, pp. 111-113, 2014.
[15] R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, M. Mikulla, O. Ambacher, and I. Kallfass, "A 67 GHz GaN voltage-controlled oscillator MMIC with high output power". in IEEE Microwave and Wireless Components Letters, vol. 23, no. 7, pp. 374-376, 2013.

Chapter 5:
[1] L. John, A. Tessmann, A. Leuther, and H. Massler, "670-GHz cascode circuits based on InGaAs metamorphic high-electron-mobility transistors". in IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 2, pp. 173-181, 2022.
[2] J. Park, S. Kang, and S. Hong, "Design of a Ka-band cascode power amplifier linearized with Cold-FET interstage matching network". in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 2, pp. 1429-1438, 2021.
[3] W. Lee, Y. Yang, H. Kang, H. Lee, W. Lim, J. Bae, H. Koo, J. Yoon, K. C. Hwang, and K.-Y. Lee, "Broadband InGaP/GaAs HBT power amplifier integrated circuit using cascode structure and optimized shunt inductor". in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, pp. 5090-5100, 2019.
[4] K. W. a. Y. C. a. S. Kobayashi, Ioulia and Heying, Benjamin and Wen-Ben Luo and Sutton, William and Wojtowicz, Mike and Oki, Aaron. "Multi decade GaN HEMT cascode-distributed power amplifier with baseband performance". in 2009 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2009, pp. 369-372.
[5] T.-Y. Lian, K.-H. Chien, and H.-K. Chiou. "An improved Gm-boosted technique for a K-band cascode Colpitts CMOS VCO". in 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, Korea (South), 2013, pp. 685-687.
[6] J.-P. Hong and S.-G. Lee, "Low phase noise Gm-boosted differential gate-to-source feedback colpitts CMOS VCO". in IEEE Journal of Solid-State Circuits, vol. 44, no. 11, pp. 3079-3091, 2009.
[7] X. Xia, X. Cheng, F. Chen, X. Luo, and X. Deng, "An improved Colpitts VCO With low phase noise using a GaAs BiHEMT process". in IEEE Microwave and Wireless Components Letters, vol. 30, no. 1, pp. 70-73, 2020.
[8] K. Song, J. Kim, H. Son, J. Yoo, M. Cho, and J.-S. Rieh, "300-GHz InP HBT quadrature VCO with integrated mixer". in IEEE Transactions on Terahertz Science and Technology, vol. 10, no. 4, pp. 419-422, 2020.
[9] G. Crupi, A. Raffo, V. Vadalà, G. Vannini, and A. Caddemi, "A new study on the temperature and bias dependence of the kink effects in S22 and H21 for the GaN HEMT technology". in Electronics, vol. 7, no. 12, 2018.
[10] D. R. Utomo, D.-W. Park, S.-G. Lee, and J.-P. Hong, "High-power 268-GHz push-push transformer-based oscillator with capacitive degeneration". in IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, pp. 612-614, 2018.
[11] J. Byunghoo and R. Harjani, "High-frequency LC VCO design using capacitive degeneration". in IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2359-2370, 2004.
[12] C.-H. Hong, C.-Y. Wu, and Y.-T. Liao, "Robustness enhancement of a class-C quadrature oscillator using capacitive source degeneration coupling". in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 1, pp. 16-20, 2015.
[13] H. Jeon, K.-S. Lee, O. Lee, K. H. An, Y. Yoon, H. Kim, K. W. Kobayashi, C.-H. Lee, and J. S. Kenney, "A cascode feedback bias technique for linear CMOS power amplifiers in a multistage cascode topology". in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 890-901, 2013.
[14] G. Guillermo, Foundations of oscillator circuit design, ed. 2006: Artech.
[15] X. Lan, M. Wojtowicz, M. Truong, F. Fong, M. Kintis, B. Heying, I. Smorchkova, and Y. C. Chen, "A V-band monolithic AlGaN/GaN VCO". in IEEE Microwave and Wireless Components Letters, vol. 18, no. 6, pp. 407-409, 2008.
[16] R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, M. Mikulla, O. Ambacher, and I. Kallfass, "A 67 GHz GaN voltage-controlled oscillator MMIC with high output power". in IEEE Microwave and Wireless Components Letters, vol. 23, no. 7, pp. 374-376, 2013.
[17] Y. Nakasha, S. Masuda, K. Makiyama, T. Ohki, M. Kanamura, N. Okamoto, T. Tajima, T. Seino, H. Shigematsu, K. Imanishi, T. Kikkawa, K. Joshin, and N. Hara. "E-band 85-mW oscillator and 1.3-W amplifier ICs using 0.12um GaN HEMTs for mmw transceivers". in 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), Monterey, CA, USA, 2010, pp. 1-4.
[18] M. Cui, C. Carta, and F. Ellinger, "Two 60-GHz 15-dBm output power VCOs in 22-nm FDSOI". in IEEE Microwave and Wireless Components Letters, vol. 31, no. 2, pp. 184-187, 2021.
[19] D. Kim and S. Jeon, "W- and G-Band GaN voltage-controlled oscillators with high output power and high efficiency". in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 8, pp. 3908-3916, 2021.

Chapter 6:
[1] T. N. Thi Do, Y. Yan, and D. Kuylenstierna. "A low phase noise W-band MMIC GaN HEMT oscillator". in 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 2020, pp. 113-115.
[2] D. Kim and S. Jeon, "W- and G-Band GaN voltage-controlled oscillators with high output power and high efficiency". in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 8, pp. 3908-3916, 2021.
[3] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, "A 94 GHz mm-Wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition". in IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 1055-1071, 2013.
[4] C. H. Tseng and Y. H. Lin, "24-GHz self-injection-locked vital-sign radar sensor with CMOS injection-locked frequency divider based on push-push oscillator topology". in IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1053-1055, 2018.
[5] F.-K. Wang, C.-H. Fang, T.-S. Horng, K.-C. Peng, J.-Y. Li, and C.-C. Chen, "Concurrent vital sign and position sensing of multiple individuals using self-injection-locked tags and injection-locked I/Q Receivers With arctangent demodulation". in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4689-4699, 2013.
[6] M. Ponton and A. Suarez, "Wireless injection locking of oscillator circuits". in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4646-4659, 2016.
[7] Y.-L. T. a. H. Wang, "Triple-push oscillator approach theory and experiment". in IEEE Journal of Solid-State Circuits, vol. 36, no. 10, pp. 1472-1479, 2001.
[8] R. Garg, P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip antenna design handbook, ed. 2001, New York, USA: Artech house.
[9] R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, F. v. Raay, and O. Ambacher. "A 92 GHz GaN HEMT voltage-controlled oscillator MMIC". in 2014 IEEE MTT-S International Microwave Symposium (IMS), Tampa, Florida, USA, 2014, pp. 1-4.
[10] Z. Yonggang and C. Yinchao. "Lumped-element equivalent circuit models for distributed microwave directional couplers". in 2008 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 2008, pp. 131-134.
[11] R. Ludwig, RF circuit design: theory and applications, ed. 2000: Pearson Education India.
[12] M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "High-gain metasurface in polyimide on-chip antenna based on CRLH-TL for sub-terahertz integrated circuits". in Scientific Reports, vol. 10, no. 1, pp. 4298, 2020.
[13] J. Xiao, Z. Qi, X. Li, W. Feng, and H. Zhu, "A 260-GHz on-chip cavity-backed slot antenna". in International Journal of Microwave and Wireless Technologies, vol. 11, no. 1, pp. 27-34, 2018.
[14] P. Starke, D. Fritsche, S. Schumann, C. Carta, and F. Ellinger, "High-efficiency wideband 3-D on-chip antennas for subterahertz applications demonstrated at 200 GHz". in IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 4, pp. 415-423, 2017.
[15] P. Kopyt, B. Salski, P. Zagrajek, D. Obrebski, and J. Marczewski, "Modeling of silicon-based substrates of patch antennas operating in the sub-THz range". in IEEE Transactions on Terahertz Science and Technology, vol. 7, no. 4, pp. 424-432, 2017.
[16] Z. Chen, C.-C. Wang, H.-C. Yao, and P. Heydari, "A BiCMOS W-Band 2×2 focal-plane array with on-chip antenna". in IEEE Journal of Solid-State Circuits, vol. 47, no. 10, pp. 2355-2371, 2012.
[17] T.-Y. Lin, S.-G. Lin, Y.-C. Chang, C. Hsieh, and D.-C. Chang. "Wide-bandwidth v-band circularly polarized IPD based quarter-mode substrate-integrated waveguide antenna using flip chip technology". in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting (APS/URSI), 2020, pp. 1601-1602.
[18] Z.-W. Miao, Z.-C. Hao, Y. Wang, B.-B. Jin, J.-B. Wu, and W. Hong, "A 400-GHz high-gain quartz-based single layered folded reflectarray antenna for terahertz applications". in IEEE Transactions on Terahertz Science and Technology, vol. 9, no. 1, pp. 78-88, 2019.
[19] A. Bisognin, D. Titz, F. Ferrero, G. Jacquemod, R. Pilard, F. Gianesello, D. Gloria, P. Brachat, C. Laporte, H. Ezzeddine, and C. Luxey, "PCB integration of a vivaldi antenna on IPD technology for 60-GHz communications". in IEEE Antennas and Wireless Propagation Letters, vol. 13, no., pp. 678-681, 2014.
[20] T.-C. Tang and K.-H. Lin, "Design of antenna on glass integrated passive device for WLAN applications". in IEEE Antennas and Wireless Propagation Letters, vol. 12, no., pp. 1204-1207, 2013.
[21] H. Fu-Jhuan, L. Chien-Ming, K. Chueh-Yu, and L. Ching-Hsing, "MMW Antenna in IPD process for 60-GHz WPAN applications". in IEEE Antennas and Wireless Propagation Letters, vol. 10, no., pp. 565-568, 2011.
[22] B. Yong-Hyun, T. Le Huu, P. Sun-Woo, L. Sang-Jin, C. Yeon-Sik, R. Eung-Ho, P. Hyun-Chang, and R. Jin-Koo, "94-GHz log-periodic antenna on GaAs substrate using air-bridge structure". in IEEE Antennas and Wireless Propagation Letters, vol. 8, no., pp. 909-911, 2009.
[23] Y. C. Chang, T. Y. Lin, J. Wang, S. G. Lin, C. P. Hsieh, Y. Huang, S. S. H. Hsu, and D. C. Chang. "A miniature W-band substrate-integrated waveguide cavity bandpass filter using GaAs-based IPD technology". in 2023 IEEE/MTT-S International Microwave Symposium (IMS), San Diego, CA, USA, 2023, pp. 1109-1111.
[24] J. Cheng, V. N. Sekhar, B. Xiaoyue, C. Bangtao, Z. Boyu, and L. Rui, "Antenna-in-package design based on wafer-level packaging with through silicon via technology". in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 9, pp. 1498-1505, 2013.

Chapter 7:
[1] D. Kim and S. Jeon, "W- and G-Band GaN voltage-controlled oscillators with high output power and high efficiency". in IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 8, pp. 3908-3916, 2021.
[2] T. N. T. Do, S. Lai, M. Horberg, H. Zirath, and D. Kuylenstierna. "A MMIC GaN HEMT voltage-controlled-oscillator with high tuning linearity and low phase noise". in 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, USA, 2015, pp. 1-4.
[3] S. Lai, D. Kuylenstierna, M. Horberg, N. Rorsman, I. Angelov, K. Andersson, and H. Zirath, "Accurate phase-noise prediction for a balanced colpitts GaN HEMT MMIC oscillator". in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 11, pp. 3916-3926, 2013.
[4] H. L. T. H. Ali, The design of low noise oscillators, ed. 1999, Berlin, Germany: Springer.
(此全文20280710後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *