帳號:guest(3.145.81.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳亦中
作者(外文):Wu, Yi-Chung
論文名稱(中文):高光響應梳狀二硫化鎢複合光偵測器
論文名稱(外文):WS2 Strip Hybrid Phototransistor with High Responsivity
指導教授(中文):邱博文
指導教授(外文):Chiu, Po-Wen
口試委員(中文):李奎毅
沈昌宏
口試委員(外文):Lee, Kuei-Yi
Shen, Chang-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:109063558
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:60
中文關鍵詞:過渡金屬二硫族化物光偵測器高光響應異質接面
外文關鍵詞:transition metal dichalcogenidesphotodetectorhigh responsivityheterojunction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:653
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在近十年中,過渡金屬二硫族化物 (Transition metal dichalcogenides,
TMDs) 因其多樣的電學特性被廣泛研究。由於單層的 TMDs 具有直接能
隙而獲得對光偵測的高靈敏度,使其被廣泛應用於光偵測元件中。在本
論文中,我們製作一個複合光偵測器,其結構為在 WS2 通道旁製作梳狀
的 WS2/WSe2 異質結構作為與金屬的接觸。在光的照射下,由於 WS2 與
WSe2 的異質接面屬於 Type-II 能帶結構,因此在梳狀結構上產生大量的
光激發電子從 WSe2 轉移到 WS2。電荷的轉移導致接觸能障下降,使得
金半接觸變好,進而讓元件效能提升。文中所製作的複合光偵測器其載子
遷移率可達 8.9 cm2
/V ·s 及 107 的電流開關比,而光響應可以到達 4800
A/W。此外,我們也對梳狀異質結構進行了 TLM 量測。在不照光時,接
觸電阻為 106.7 kΩ · µm 而轉移長度為 33.64 nm;在照光後,接觸電阻降
至 10.49 kΩ · µm 而轉移長度降為 3.56 nm。
In the past decade, transition metal dichalcogenide(TMDs) have been extensively studied due to their diverse electronic properties. Because of the
high sensitivity to light detection obtained from the direct band gap properties, monolayer TMDs have been widely used in optoelectronic devices.
In this work, we demonstrate a composite photodetector comprising WS2
channel sandwiched between strip-shaped WS2/WSe2 heterostructure as the
metal contact. Upon light illumination, since the type-II band alignment at
the WS2/WSe2 heterojunction, a large number of photoexcited electrons are
generated on the strip structure and transferred from WSe2 to WS2. Charge
transfer leads to reduce contact barrier and makes contact better, thereby
improving the performance of the device. The composite photodetector
exhibits a high mobility of 8.9 cm2
/V ·s and a current on/off ratio of 107
.
It also can reach a high responsivity of 4800 A/W. Furthermore, transfer
length method(TLM) measurement was also performed on strip-shaped heterostructure. The contact resistance is 106.7 kΩ · µm and the transfer length
is 33.64 nm without illumination. Yet, under light illumination, the contact
resistance decreases to 10.49 kΩ · µm and the transfer length reaches 3.56
nm.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
第 1 章 緒論 1
1.1半導體的發展史 1
1.2 半導體製程的微縮與限制 2
1.3 二維材料介紹 4
1.4 半導體光偵測元件簡介 5
1.4.1 光偵測器 6
1.4.2 常見的光偵測器種類 8
1.5 論文架構 10
第 2 章 過渡金屬二硫族化物介紹 11
2.1 元素組成與晶體結構 11
2.1.1 元素組成 11
2.1.2 晶體結構 12
2.2 電子能帶 13
2.3 製備方法 15
2.3.1 機械剝離法 16
2.3.2 化學氣相沉積法 16
2.4 材料檢測 18
2.4.1 拉曼散射頻譜 18
2.4.2 光致螢光光譜 20
第 3 章 過渡金屬二硫族化物與金屬接處探討 22
3.1 過渡金屬二硫族化物與金屬接觸機制 22
3.2 金屬接觸與費米能階釘扎探討 24
3.3 金屬接觸分析之方法 27
第 4 章 元件製程 31
4.1 梳狀異質結構製作 31
4.1.1 製程使用儀器簡介 31
4.1.2 製程步驟細節 35
4.1.3 材料檢測 39
4.2 TLM 製作 40
4.3 光偵測器製作 42
第 5 章 實驗量測結果分析 45
5.1 元件量測方法與量測系統 45
5.2 光電元件量測分析 46
5.2.1 基本電晶體量測分析 46
5.2.2 光電特性量測分析 48
5.3 垂直堆疊結構之量測分析 50
5.3.1 元件製程 50
5.3.2 光電特性量測分析 51
5.4 接觸電阻量測分析 53
第 6 章 實驗總結與未來展望 58
參考文獻 59



[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev.,
vol. 74, pp. 230–231, 07 1948.
[2] “History of the transistor (the crystal triode).” [Online; accessed 14-January-2023].
[3] “First monolithic silicon ic chip.” [Online; accessed 14-January-2023].
[4] Wikipedia contributors, “Moore’s law — Wikipedia, the free encyclopedia,” 2023.
[Online; accessed 14-January-2023].
[5] “Hkepc.” [Online; accessed 14-January-2023].
[6] K. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,”
Science, vol. 306, pp. 666–669, 08 2004.
[7] G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “iii- v compound semiconductor devices: Optical detectors,” IEEE Transactions on Electron Devices, vol. 31,
pp. 1643–1655, 11 1984.
[8] “Common types of photodetectors.” [Online; accessed 15-January-2023].
[9] M. Chhowalla, H. Shin, G. Eda, L. Li, K. Loh, and H. Zhang, “The chemistry of twodimensional layered transition metal dichalcogenide nanosheets,” Nature chemistry,
vol. 5, pp. 263–275, 04 2013.
[10] Q. H. Wang, K. Kalantar-zadeh, A. Kis, J. Coleman, and M. Strano, “Electronics
and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature
nanotechnology, vol. 7, pp. 699–712, 11 2012.
[11] W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, “Thickness and strain effects on
electronic structures of transition metal dichalcogenides: 2h-m x 2 semiconductors
(m= mo, w; x= s, se, te),” Physical Review B, vol. 85, no. 3, p. 033305, 2012.
[12] M. Xu, T. Liang, M. Shi, and H. Chen, “Graphene-like two-dimensional materials,”
Chemical reviews, vol. 113, 01 2013.
[13] K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and
A. Geim, “Two-dimensional atomic crystals,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 102, pp. 10451–10453, 08 2005.
[14] A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer mos2 and
ws2,” Physical Review B, vol. 84, p. 155413, 10 2011.
[15] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal
contacts to monolayer transition-metal dichalcogenide semiconductors,” p. 031005,
07 2014.
[16] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park,
and W. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, 01 2017.
[17] C. , L. Colombo, R. Wallace, and K. Cho, “The unusual mechanism of partial fermi
level pinning at metal-mos2 interfaces,” Nano letters, vol. 14, 03 2014.
[18] K. Sotthewes, R. Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski, D. Kas,
H. Zandvliet, and P. Bampoulis, “Universal fermi level pinning in transition metal
dichalcogenides,” The Journal of Physical Chemistry C, vol. 123, 02 2019.
[19] Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, and Q. Chen, “Study on the resistance
distribution at the contact between molybdenum disulfide and metals,” ACS Nano,
vol. 8, pp. 7771–7779, 07 2014.
[20] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, L.-J. Li, and etc.,
“Epitaxial growth of a monolayer wse2-mos2 lateral p-n junction with an atomically
sharp interface,” Science, vol. 349, pp. 524–528, 07 2015.
(此全文20250201後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *