帳號:guest(18.226.172.2)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭傑予
作者(外文):Cheng, Chieh-Yu
論文名稱(中文):針對混合電路考量可繞度之擺放指引生成方法
論文名稱(外文):Generation of Routability-aware Placement Guidance for Mixed-size Designs
指導教授(中文):王廷基
指導教授(外文):Wang, Ting-Chi
口試委員(中文):麥偉基
陳宏明
口試委員(外文):Mak, Wai-Kei
Chen, Hung-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:109062630
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:28
中文關鍵詞:混合電路擺放指引可繞
外文關鍵詞:Routability-awarePlacement GuidanceMixed-size Designs
相關次數:
  • 推薦推薦:0
  • 點閱點閱:381
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
元件擺放在現今的實體設計流程之中是非常關鍵的步驟,其中元件擺放
的可繞度早已被廣泛討論。在本篇論文中,針對具有巨集元件的混合電路,
我們探索了使用擺放指引來緩解繞線壅塞並減少設計規則違反的可能性。
藉由提取電路中元件的連接資訊以及標準元件對於巨集元件的相對關係,
我們使用圖神經網路對每個標準元件生成一個嵌入,用來代表該元件在電
路之中的連接關係。接著,我們應用兩種知名的分群演算法上在該嵌入上
來產生擺放指引。因此,商業擺放器在擺放時會努力避免具有複雜連接性
之標準元件的碎片化。實驗結果顯示,相對於商業軟體針對壅塞問題的擺
放流程,我們的方法減少了 28% 的繞線溢出及 74% 的設計規則違反。由於
在擺放階段合適的考量可繞度,我們平均減少了 31% 的繞線執行時間。
Placement is a critical step in a modern physical design flow, and the routability of the placement result has been long discussed. In this thesis, we explore the
possibility of using soft placement guidance to mitigate routing congestion and reduce design rule violations for mixed-size designs. By extracting the connectivity
of cell instances and the relation between standard cells and each macro in a design using the graph neural network (GNN), we generate an embedding for each
standard cell representing connectivity information in the circuit. Then, we apply
two renowned clustering algorithms to the embeddings and create the soft placement guidance. By adding the soft placement guidance to a commercial placer,
the placer will strive to avoid the fragmentation of standard cells with dense connections in the placement stage. Experimental results show that our methodology
helps the commercial tool reduce 28% routing overflow and avoid 74% design rule
violations. Because of properly considering routability in the placement stage, it
also helps reduce 31% routing runtime on average.
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . 4
1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Organization . . . . . . . . . .. . . . . . . . . . . 5
2 Related Works . .. . . . . . . . . . . . . . . . . . . . . . 6
2.1 Routability-driven Placement . . . . . . . . . . . . . . . . 6
2.2 Applications of Placement Guidance . . . . . . . . . . . . . 7
3 Methodology . . . . . . . . . . . .. . . . . . . . . . . . . . 9
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Node Embeddings Generation . . . . . . . . . . . . . . . . . 10
3.2.1 Graph Creation . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Node Bundling . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Initial Node Features Creation . . . . . . . . . . . . . . 11
3.2.4 GNN Node Embeddings Learning . . . . . . . . . . . . . . . 13
3.3 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Experimental Results . . . . . . . . . . . . . . . . . . . . . 19
4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 19
4.2 Results . . . . . . . .. . . . . . . . . . . . . . . . . . . 19
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 26
ii
References . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
[1] “Synopsys, ic compiler ii: Block-level implementation,” 2019.
[2] Y.-C. Lu, S. Pentapati, and S. K. Lim, “The law of attraction: affinity-aware placement
optimization using graph neural networks,” in Proceedings of International Symposium
on Physical Design, pp. 7–14, 2021.
[3] Y. Chou, J.-W. Hsu, Y.-W. Chang, and T.-C. Chen, “Vlsi structure-aware placement for
convolutional neural network accelerator units,” in Proceedings of Design Automation
Conference, pp. 1117–1122, 2021.
[4] M.-K. Hsu, Y.-F. Chen, C.-C. Huang, S. Chou, T.-H. Lin, T.-C. Chen, and Y.-W. Chang,
“Ntuplace4h: A novel routability-driven placement algorithm for hierarchical mixed-size
circuit designs,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 33, no. 12, pp. 1914–1927, 2014.
[5] C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden, “Routability-driven placement and
white space allocation,” in IEEE Transactions on Computer-aided design of Integrated
Circuits and Systems, vol. 26, no. 5, pp. 858–871, 2007.
[6] R. C. De Amorim and B. Mirkin, “Minkowski metric, feature weighting and anomalous
cluster initializing in k-means clustering,” Pattern Recognition, vol. 45, no. 3, pp. 1061–
1075, 2012.
[7] D. Fang, B. Zhang, H. Hu, W. Li, B. Yuan, and J. Hu, “Global placement exploiting soft 2d
regularity,” in Proceedings of International Symposium on Physical Design, pp. 203–210,
2022.
[8] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing solution quality
and routability validation in global placement,” in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 9, pp. 1717–1730, 2018.
[9] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for partitioning graphs,”
The Bell system technical journal, vol. 49, no. 2, pp. 291–307, 1970.
[10] L. Hagen and A. B. Kahng, “A new approach to effective circuit clustering,” in Proceddings of International Conference on Computer-Aided Design, vol. 92, pp. 422–427, 1992.
[11] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks,” in IEEE journal of solid-state
circuits, vol. 52, no. 1, pp. 127–138, 2016.
27
[12] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Proceedings of the International Conference on Neural Information Processing
Systems, p. 1025––1035, 2017.
[13] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu, Y. Gai,
et al., “Deep graph library: A graph-centric, highly-performant package for graph neural
networks,” arXiv preprint arXiv:1909.01315, 2019.
[14] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65, 1987.
[15] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density based clustering.,” J.
Open Source Softw., vol. 2, no. 11, p. 205, 2017.
[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,”
the Journal of machine Learning research, vol. 12, pp. 2825–2830, 2011.
[17] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “Ispd 2015 benchmarks with fence
regions and routing blockages for detailed-routing-driven placement,” in Proceedings of
the 2015 Symposium on International Symposium on Physical Design, pp. 157–164, 2015.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *