|
[1] Yang Li and Jianke Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In European conference on computer vision, pages 254–265. Springer, 2014. [2] Hamed Kiani Galoogahi, Ashton Fagg, and Simon Lucey. Learning background- aware correlation filters for visual tracking. In Proceedings of the IEEE international conference on computer vision, pages 1135–1143, 2017. [3] Shuran Song and Jianxiong Xiao. Tracking revisited using rgbd camera: Unified benchmark and baselines. In Proceedings of the IEEE international conference on computer vision, pages 233–240, 2013. [4] Alan Lukezic, Ugur Kart, Jani Kapyla, Ahmed Durmush, Joni-Kristian Kamarainen, Jiri Matas, and Matej Kristan. Cdtb: A color and depth visual object tracking dataset and benchmark. In Proceedings of the IEEE/CVF International Conference on Com- puter Vision, pages 10013–10022, 2019. [5] Song Yan, Jinyu Yang, Jani K ̈apyl ̈a, Feng Zheng, Ales Leonardis, and Joni-Kristian K ̈am ̈ar ̈ainen. Depthtrack : Unveiling the power of RGBD tracking. CoRR, abs/2108.13962, 2021. URL https://arxiv.org/abs/2108.13962. [6] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning dis- criminative model prediction for tracking. CoRR, abs/1904.07220, 2019. URL http://arxiv.org/abs/1904.07220. [7] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg. ATOM: accurate tracking by overlap maximization. CoRR, abs/1811.07628, 2018. URL http://arxiv.org/abs/1811.07628. [8] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995. [9] Zhaoxia Fu and Yan Han. Centroid weighted kalman filter for visual object track- ing. Measurement, 45(4):650–655, 2012. ISSN 0263-2241. doi: https://doi.org/ 10.1016/j.measurement.2012.01.004. URL https://www.sciencedirect. com/science/article/pii/S026322411200005X. [10] Zebin Cai, Zhenghui Gu, Zhu Yu, Hao Liu, and Ke Zhang. A real-time visual object tracking system based on kalman filter and mb-lbp feature matching. Multimedia Tools and Applications, 75, 12 2014. doi: 10.1007/s11042-014-2411-6. [11] Dorin Comaniciu and Visvanathan Ramesh. Mean shift and optimal prediction for efficient object tracking. In Proceedings 2000 International Conference on Image Processing (Cat. No. 00CH37101), volume 3, pages 70–73. IEEE, 2000. [12] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. Object tracking using sift features and mean shift. Computer vision and image understanding, 113(3):345–352, 2009. [13] Changjiang Yang, R. Duraiswami, and L. Davis. Fast multiple object tracking via a hierarchical particle filter. In Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, volume 1, pages 212–219 Vol. 1, 2005. doi: 10.1109/ ICCV.2005.95. [14] Zulfiqar Hasan Khan, Irene Yu-Hua Gu, and Andrew G. Backhouse. Robust visual object tracking using multi-mode anisotropic mean shift and particle filters. IEEE Transactions on Circuits and Systems for Video Technology, 21(1):74–87, 2011. doi: 10.1109/TCSVT.2011.2106253. [15] Irene Anindaputri Iswanto and Bin Li. Visual object tracking based on mean-shift and particle-kalman filter. Procedia computer science, 116:587–595, 2017. [16] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and Michael Felsberg. Con- volutional features for correlation filter based visual tracking. In Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops, December 2015. [17] Alan Lukezic, Tomas Vojir, Luka ˇCehovin Zajc, Jiri Matas, and Matej Kristan. Discriminative correlation filter with channel and spatial reliability. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6309–6318, 2017. [18] Matthias Mueller, Neil Smith, and Bernard Ghanem. Context-aware correlation filter tracking. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1396–1404, 2017. [19] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea Vedaldi, and Philip HS Torr. Fully-convolutional siamese networks for object tracking. In European confer- ence on computer vision, pages 850–865. Springer, 2016. [20] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and Song Wang. Learning dynamic siamese network for visual object tracking. In Proceedings of the IEEE international conference on computer vision, pages 1763–1771, 2017. [21] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A twofold siamese network for real-time object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018. [22] Xingping Dong and Jianbing Shen. Triplet loss in siamese network for object track- ing. In Proceedings of the European conference on computer vision (ECCV), pages 459–474, 2018. [23] Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, and Huchuan Lu. Learning spatio- temporal transformer for visual tracking. In Proceedings of the IEEE/CVF Interna- tional Conference on Computer Vision, pages 10448–10457, 2021. [24] Feng Xiao, Qiuxia Wu, and Han Huang. Single-scale siamese network based rgb-d object tracking with adaptive bounding boxes. Neurocomputing, 451:192–204, 2021. [25] Luca Bertinetto, Jack Valmadre, Joo F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. Fully-convolutional siamese networks for object tracking, 2016. URL https: //arxiv.org/abs/1606.09549. [26] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yuning Jiang. Acquisition of localization confidence for accurate object detection. In Proceedings of the European conference on computer vision (ECCV), pages 784–799, 2018. [27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. [28] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yuning Jiang. Acquisition of localization confidence for accurate object detection. In Proceedings of the European conference on computer vision (ECCV), pages 784–799, 2018. [29] Matej Kristan, Jiri Matas, Aleˇs Leonardis, Tomas Vojir, Roman Pflugfelder, Gustavo Fernandez, Georg Nebehay, Fatih Porikli, and Luka ˇCehovin. A novel performance evaluation methodology for single-target trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(11):2137–2155, Nov 2016. ISSN 0162-8828. doi: 10.1109/TPAMI.2016.2516982. |