帳號:guest(3.133.120.91)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡明憲
作者(外文):Tsai, Ming-Shian
論文名稱(中文):針對準確事件偵測的合作式社群數位孿生、社群物聯網和群眾外包之優化
論文名稱(外文):Optimization for Accuracy-aware Event Detection through Collaborative Social Digital Twins, Social IoT, and Crowdsourcing
指導教授(中文):陳文村
許健平
指導教授(外文):Chen, Wen-Tsuen
Sheu, Jang-Ping
口試委員(中文):楊得年
王志宇
口試委員(外文):Yang, De-Nian
Wang, Chih-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:109062548
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:76
中文關鍵詞:社交物聯網社交數位孿生群眾外包眾包移動眾包物聯網數位孿生準確性準確性提升
外文關鍵詞:Social Internet of ThingsSocial Digital TwinsCrowdsourcingMobile CrowdsourcingInternet of ThingsDigital TwinAccuracyAccuracy Improvement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
群眾外包可以有效地利用社交物聯網(Social Internet of Things, SIoT)設備和移動用戶來收集數據並偵測事件。近年來隨著數位孿生(Digital twins, DTs)出現,能透過預測和模擬對應的SIoTs和用戶的狀態和信息以提高收集數據的準確性。一些研究還提出了社交數位孿生(Social Digital twins, SDTs)的概念,以描述DTs的社交能力。我們可以建立一個協作小組來分享由SIoT、SDTs和移動用戶收集的數據,以共同偵測事件。然而據我們所知,目前沒有相關研究探討SIoT、SDTs和移動用戶之間合作,以實現對準確性偵測事件的檢測。在本論文中,我們制定了一個新的優化問題,名為具準確性提升感知的社交物聯網、社交數位孿生與用戶選擇 (Accuracy Improvement-aware SIoT, SDT, and User Selection, AISSUS),用於選擇一組SIoTs、SDTs與用戶在有準確性要求情況下去偵測事件並同時最小化計算成本、通信成本、維護成本和用戶僱傭成本之總和。我們證明了AISSUS是NP-hard的問題和它的不可近似性。為了解決這個問題,我們提出了一種啟發式演算法名為準確性和社交感知的社交物聯網、用戶和社交數位孿生選擇(Accuracy- and Social-aware SIoT, User and SDT Selection, ASSUDS),其中想法包含協作節點選擇(Collaborative Node Selection, CNS)、協作樹建構(Collaborative Tree Construction, CTC)、協作樹節點替換與修剪(CT Nodes Replacement and Pruning, CTNRP)以及用戶交換與用戶調整(User Swapping and User Adjustment with SDT of user, USUAS)。為了找到選擇SIoTs和SDTs問題的固有特性,我們還設計了問題的特殊情況(Specialized SIoT and SDT Selection Problem, SSDSP),只考慮準確度高於閾值的公共SIoTs和SDTs。為了解決SSDSP,我們提出了協作式SIoT和SDT選擇(Collaborative SIoT and SDT Selection, CSDS),並證明了CSDS的近似比率。模擬結果顯示,相比基線演算法,ASSUDS在AISSUS減少了35%的總成本,而CSDS在SSDSP下減少了50%的總成本。
Crowdsourcing can effectively utilize the Social Internet of Things (SIoT) devices and mobile users to collect data and monitor events. Recently, Digital Twins (DTs) have emerged to improve the accuracy of collected data by utilizing prediction and simulation of the states and information of the corresponding SIoTs and users. Some research also proposes the concept of Social Digital Twins (SDTs) to describe the social capabilities of DTs. We can construct a collaborative group to share data collected by SIoT, SDTs, and mobile users to detect events collaboratively. However, to the best of our knowledge, there is no work investigating the collaboration among SIoT, SDTs, and mobile users for accuracy-ware event detection. In this thesis, we formulate a new optimization problem, named Accuracy Improvement-aware SIoT, SDT, and User Selection (AISSUS) to select a set of SIoTs, SDTs, and mobile users to monitor the events with accuracy requirements while minimizing the total computation cost, communication cost, maintenance cost, and user hiring cost. We then prove the NP-hardness and inapproximability of AISSUS. To solve the problem, we propose a heuristic algorithm Accuracy- and Social-aware SIoT, User and SDT Selection (ASSUSS) with the ideas of Collaborative Node Selection (CNS), Collaborative Tree Construction (CTC), CT Nodes Replacement and Pruning (CTNRP), and User Swapping and User Adjustment with SDT of user (USUAS). To find the intrinsic properties of the selection of SIoTs and SDTs, we also design the problem’s special case, called Specialized SIoT and SDT Selection Problem (SSDSP), by considering only public SIoTs and SDTs with the accuracy of monitoring locations above the accuracy threshold. To solve SSDSP, we propose Collaborative SIoT and SDT Selection (CSDS) and show the approximation ratios of CSDS. Simulation results show that ASSUSS achieves a 35% reduction in total cost for AISSUS and CSDS achieves a 50% reduction in total cost for SSDSP compared to the baseline algorithms.
1 Introduction 1
2 Related Work 11
2.1 Social Internet of Things (SIoT) 11
2.2 Digital Twins (DTs) 11
2.3 Social Digital Twins (SDTs) 13
2.4 Crowdsourcing 13
3 System Model and Problem Formulation 18
3.1 System Model 18
3.2 Problem Formulation 21
3.3 Theoretical Analysis 25
3.4 Summary 27
4 Algorithm Design 29
Algorithm Design 29
4.1 Overview of Algorithm 29
4.2 Accuracy- and Social-aware SIoT, User and SDT Selection (ASSUSS) 30
4.3 Specialized SIoT and SDT Selection Problem (SSDSP) 45
4.4 Collaborative SIoT and SDT Selection (CSDS) 46
4.5 Discussion 50
4.6 Summary 53
5 Simulation 54
5.1 Simulation Setup 54
5.2 Baseline Algorithm 56
5.3 Simulation Results and Analyses 57
5.4 Summary 68
6 Conclusions 69
[1] D. Hettiachchi, V. Kostakos, and J. Goncalves, “A survey on task assignment in crowdsourcing,” ACM Comput. Surv., vol. 55, no. 3, 2022, ISSN: 0360-0300. DOI:10.1145/3494522. [Online]. Available: https://doi.org/10.1145/3494522.
[2] J. Jiang, B. An, Y. Jiang, C. Zhang, Z. Bu, and J. Cao, “Group-oriented task allocation for crowdsourcing in social networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 7, pp. 4417–4432, 2021. DOI: 10.1109/TSMC.2019.2933327.
[3] X. Cheng, B. He, G. Li, and B. Cheng, “A survey of crowdsensing and privacy protection in digital city,” IEEE Transactions on Computational Social Systems, pp. 1–17, 2022. DOI: 10.1109/TCSS.2022.3204635.
[4] X. Tao and W. Song, “Profit-oriented task allocation for mobile crowdsensing with worker dynamics: Cooperative offline solution and predictive online solution,” IEEE Transactions on Mobile Computing, vol. 20, no. 8, pp. 2637–2653, 2021. DOI: 10. 1109/TMC.2020.2983688.
[5] L. Liu, L. Wang, Z. Lu, Y. Liu, W. Jing, and X. Wen, “Cost-and-quality aware data collection for edge-assisted vehicular crowdsensing,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5371–5386, 2022. DOI: 10.1109/TVT.2022. 3151859.
[6] L. Jiang, M. Alazab, and Z. Qin, “Secure task distribution with verifiable re-encryption in mobile crowdsensing assisted emergency iot system,” IEEE Internet of Things Journal, pp. 1–1, 2023. DOI: 10.1109/JIOT.2023.3272070.
[7] J. Xu, G. Chen, Y. Zhou, Z. Rao, D. Yang, and C. Xie, “Incentive mechanisms for large-scale crowdsourcing task diffusion based on social influence,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3731–3745, 2021. DOI: 10.1109/
TVT.2021.3063380.
[8] J. Xu, Z. Luo, C. Guan, D. Yang, L. Liu, and Y. Zhang, “Hiring a team from social network: Incentive mechanism design for two-tiered social mobile crowdsourcing,” IEEE Transactions on Mobile Computing, pp. 1–1, 2022. DOI: 10.1109/TMC.2022.3162108.
[9] J. Xu and C. Fung, “A risk-defined trust transitivity model for group decisions in social networks,” in Proceedings of 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019, pp. 415–420.
[10] K.-Y. Chen, C.-H. Wang, S.-H. Chiang, D.-N. Yang, W.-T. Chen, and J.-P. Sheu,“Collaboration between social internet of things and mobile users for accuracy-aware detection,” in Proceedings of 2021 IEEE International Conference on Communications,
2021, pp. 1–6. DOI: 10.1109/ICC42927.2021.9500871.
[11] A. Hamrouni, T. Alelyani, H. Ghazzai, and Y. Massoud, “Toward collaborative mobile crowdsourcing,” IEEE Internet of Things Magazine, vol. 4, no. 2, pp. 88–94, 2021. DOI: 10.1109/IOTM.0001.2000185.
[12] A. Hamrouni, H. Ghazzai, T. Alelyani, and Y. Massoud, “Low-complexity recruitment for collaborative mobile crowdsourcing using graph neural networks,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 813–829, 2022. DOI: 10.1109/JIOT.
2021.3086410.
[13] G. Sciddurlo, I. Huso, D. Striccoli, G. Piro, and G. Boggia, “A multi-tiered social iot architecture for scalable and trusted service provisioning,” in Proceedings of 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6. DOI: 10.
1109/GLOBECOM46510.2021.9685084.
[14] M. Ibrar, L.Wang, A. Akbar, et al., “3-d-sis: A 3-d-social identifier structure for collaborative edge computing based social iot,” IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp. 313–323, 2022. DOI: 10 . 1109 / TCSS . 2021 .3064716.
[15] A. Kopponen, A. Hahto, P. Kettunen, et al., “Empowering citizens with digital twins: A blueprint,” IEEE Internet Computing, vol. 26, no. 5, pp. 7–16, 2022. DOI: 10. 1109/MIC.2022.3159683.
[16] Z. Wang, R. Gupta, K. Han, et al., “Mobility digital twin: Concept, architecture, case study, and future challenges,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 17 452–17 467, 2022. DOI: 10.1109/JIOT.2022.3156028.
[17] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the iot context: A survey on technical features, scenarios, and architectural models,” Proceedings of the IEEE, vol. 108, no. 10, pp. 1785–1824, 2020. DOI: 10.1109/JPROC.2020.2998530.
[18] F. AlMahamid, H. Lutfiyya, and K. Grolinger, “Virtual sensor middleware: Managing iot data for the fog-cloud platform,” in Proceedings of 2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2022, pp. 41–48.
DOI: 10.1109/CCECE49351.2022.9918499.
[19] A. Roy, S. Misra, and S. Nag, “Prime: An optimal pricing scheme for mobile sensors-as-a-service,” IEEE Transactions on Mobile Computing, vol. 21, no. 4, pp. 1362–1373, 2022. DOI: 10.1109/TMC.2020.3023885.
[20] A. Gaddam, T.Wilkin, M. Angelova, and J. Gaddam, “Detecting sensor faults, anomalies and outliers in the internet of things: A survey on the challenges and solutions,” Electronics, vol. 9, no. 3, 2020, ISSN: 2079-9292. DOI: 10.3390/electronics9030511. [Online]. Available: https://www.mdpi.com/2079-9292/9/3/511.
[21] Y. Li and X. Shen, “A novel wind speed-sensing methodology for wind turbines based on digital twin technology,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–13, 2022. DOI: 10.1109/TIM.2021.3139698.
[22] M. Fahim, V. Sharma, T.-V. Cao, B. Canberk, and T. Q. Duong, “Machine learning-based digital twin for predictive modeling in wind turbines,” IEEE Access, vol. 10, pp. 14 184–14 194, 2022. DOI: 10.1109/ACCESS.2022.3147602.
[23] J. Thieling, P. Elspas, and J. Roßmann, “Neural networks for end-to-end refinement of simulated sensor data for automotive applications,” in Proceedings of 2019 IEEE International Systems Conference (SysCon), 2019, pp. 1–8. DOI: 10.1109/SYSCON. 2019.8836918.
[24] G. Agresti, H. Schaefer, P. Sartor, and P. Zanuttigh, “Unsupervised domain adaptation for tof data denoising with adversarial learning,” in Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5579–5586. DOI: 10.1109/CVPR.2019.00573.
[25] S. Misra and A. Chakraborty, “Qos-aware dispersed dynamic mapping of virtual sensors in sensor-cloud,” IEEE Transactions on Services Computing, vol. 14, no. 6, pp. 1970–1980, 2021. DOI: 10.1109/TSC.2019.2917447.
[26] T. Liu, L. Tang,W.Wang, Q. Chen, and X. Zeng, “Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1427–1444, 2022. DOI: 10.1109/JIOT.2021.3086961.
[27] Y. Lu, S. Maharjan, and Y. Zhang, “Adaptive edge association for wireless digital twin networks in 6g,” IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16 219–16 230, 2021. DOI: 10.1109/JIOT.2021.3098508.
[28] O. Chukhno, N. Chukhno, G. Araniti, C. Campolo, A. Iera, and A. Molinaro, “Placement of social digital twins at the edge for beyond 5g iot networks,” IEEE Internet of Things Journal, pp. 1–1, 2022. DOI: 10.1109/JIOT.2022.3190737.
[29] C. He, T. H. Luan, R. Lu, Z. Su, and M. Dong, “Security and privacy in vehicular digital twin networks: Challenges and solutions,” IEEE Wireless Communications, pp. 1–8, 2022. DOI: 10.1109/MWC.002.2200015.
[30] C. Altun, B. Tavli, and H. Yanikomeroglu, “Liberalization of digital twins of iot-enabled home appliances via blockchains and absolute ownership rights,” IEEE Communications Magazine, vol. 57, no. 12, pp. 65–71, 2019. DOI: 10.1109/MCOM.001. 1900072.
[31] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and P. Bouvry, “A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2419–2465, 2019. DOI: 10.1109/COMST.2019.2914030.
[32] X. Niu and S. Qin, “Integrating crowd-/service-sourcing into digital twin for advanced manufacturing service innovation,” Advanced Engineering Informatics, vol. 50, p. 101 422, 2021, ISSN: 1474-0346. DOI: https : / / doi . org / 10 . 1016 / j .
aei.2021.101422. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474034621001749.
[33] J. Li, J. Jin, D. Yuan, and H. Zhang, “Virtual fog: A virtualization enabled fog computing framework for internet of things,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 121–131, 2018. DOI: 10.1109/JIOT.2017.2774286.
[34] Y. Hui, X. Ma, Z. Su, et al., “Collaboration as a service: Digital-twin-enabled collaborative and distributed autonomous driving,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 18 607–18 619, 2022. DOI: 10.1109/JIOT.2022.3161677.
[35] F. Sangoleye, N. Irtija, and E. E. Tsiropoulou, “Data acquisition in social internet of things based on contract theory,” in Proceedings of 2021 IEEE International Conference on Communications, 2021, pp. 1–6. DOI: 10.1109/ICC42927.2021.9500254.
[36] A. Khelloufi, H. Ning, S. Dhelim, et al., “A social-relationships-based service recommendation system for siot devices,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1859–1870, 2021. DOI: 10.1109/JIOT.2020.3016659.
[37] S. Dhelim, H. Ning, and N. Aung, “Compath: User interest mining in heterogeneous signed social networks for internet of people,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 7024–7035, 2021. DOI: 10.1109/JIOT.2020.3037109.
[38] Y. Li, Z. Guo, T. Yang, L. Jiang, and M. Li, “Satisfied matching-embedded social internet of things for content preference-aware resource allocation in d2d underlaying cellular networks,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8454–8468,
2022. DOI: 10.1109/JIOT.2021.3113914.
[39] H. Elayan, M. Aloqaily, and M. Guizani, “Digital twin for intelligent context-aware iot healthcare systems,” IEEE Internet of Things Journal, vol. 8, no. 23, pp. 16 749–16 757, 2021. DOI: 10.1109/JIOT.2021.3051158.
[40] Y. Liu, A. Yang, Q. Zeng, Y. Sun, J. Gao, and Z. Lv, “Task scheduling of real-time traffic information processing based on digital twins,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–9, 2022. DOI: 10 . 1109 / TITS . 2022 .3196166.
[41] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021. DOI: 10.1109/JIOT. 2021.3079510.
[42] Y. Hui, Q. Wang, N. Cheng, R. Chen, X. Xiao, and T. H. Luan, “Time or reward: Digital-twin enabled personalized vehicle path planning,” in Proceedings of 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6. DOI: 10.1109/GLOBECOM46510.2021.9685559.
[43] H. Darvishi, D. Ciuonzo, E. R. Eide, and P. S. Rossi, “Sensor-fault detection, isolation and accommodation for digital twins via modular data-driven architecture,”
IEEE Sensors Journal, vol. 21, no. 4, pp. 4827–4838, 2021. DOI: 10.1109/JSEN.2020.3029459.
[44] S. Ali, T. Glass, B. Parr, J. Potgieter, and F. Alam, “Low cost sensor with iot lorawan connectivity and machine learning-based calibration for air pollution monitoring,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–11, 2021. DOI: 10.1109/TIM.2020.3034109.
[45] L. Zhao, H. Chai, Y. Han, K. Yu, and S. Mumtaz, “A collaborative v2x data correction method for road safety,” IEEE Transactions on Reliability, vol. 71, no. 2, pp. 951–962, 2022. DOI: 10.1109/TR.2022.3159664.
[46] Y. Liao, E. Hashemi, T. Wang, and B. Yang, “A learning-aided generic framework for fault detection and recovery of inertial sensors in automated driving systems,” IEEE Systems Journal, vol. 15, no. 2, pp. 3001–3011, 2021. DOI: 10.1109/JSYST.2020.3004805.
[47] X. Wang, W. Zhou, and Y. Jia, “Attention gan for multipath error removal from tof sensors,” IEEE Sensors Journal, vol. 22, no. 20, pp. 19 713–19 721, 2022. DOI: 10.1109/JSEN.2022.3203759.
[48] S. Goudarzi, A. Asif, and H. Rivaz, “Fast multi-focus ultrasound image recovery using generative adversarial networks,” IEEE Transactions on Computational Imaging, vol. 6, pp. 1272–1284, 2020. DOI: 10.1109/TCI.2020.3019137.
[49] K. Zhang, J. Cao, S. Maharjan, and Y. Zhang, “Digital twin empowered content caching in social-aware vehicular edge networks,” IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp. 239–251, 2022. DOI: 10.1109/TCSS.2021.3068369.
[50] X. Tao and A. S. Hafid, “Deepsensing: A novel mobile crowdsensing framework with double deep q-network and prioritized experience replay,” IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11 547–11 558, 2020. DOI: 10 . 1109 / JIOT .2020.3022611.
[51] L. Wang, D. Yang, Z. Yu, et al., “Acceptance-aware mobile crowdsourcing worker recruitment in social networks,” IEEE Transactions on Mobile Computing, vol. 22, no. 2, pp. 634–646, 2023. DOI: 10.1109/TMC.2021.3090764.
[52] M. Fadda, M. Anedda, R. Girau, G. Pau, and D. D. Giusto, “A social internet of things smart city solution for traffic and pollution monitoring in cagliari,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2373–2390, 2023. DOI: 10.1109/JIOT.
2022.3211093.
[53] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Communication-efficient federated learning and permissioned blockchain for digital twin edge networks,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2276–2288, 2021. DOI: 10.1109/JIOT.2020.3015772.
[54] D. Rajavel, A. Chakraborty, and S. Misra, “Qos-aware sensor virtualization for provisioning green sensors-as-a-service,” IEEE Transactions on Green Communications and Networking, vol. 5, no. 3, pp. 1128–1137, 2021. DOI: 10.1109/TGCN.2021.3074473.
[55] P. De Meo, E. Ferrara, D. Rosaci, and G. M. L. Sarné, “Trust and compactness in social network groups,” IEEE Transactions on Cybernetics, vol. 45, no. 2, pp. 205–216, 2015. DOI: 10.1109/TCYB.2014.2323892.
[56] O. Chukhno, N. Chukhno, G. Araniti, C. Campolo, A. Iera, and A. Molinaro, “Optimal placement of social digital twins in edge iot networks,” Sensors, vol. 20, no. 21, 2020, ISSN: 1424-8220. DOI: 10.3390/s20216181. [Online]. Available: https://www.mdpi.com/1424-8220/20/21/6181.
[57] H. Darvishi, D. Ciuonzo, and P. S. Rossi, “Real-time sensor fault detection, isolation and accommodation for industrial digital twins,” in Proceedings of 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC), vol. 1, 2021, pp. 1–6. DOI: 10.1109/ICNSC52481.2021.9702175.
[58] T. Yu, X. Wang, and A. Shami, “Recursive principal component analysis-based data outlier detection and sensor data aggregation in iot systems,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2207–2216, 2017. DOI: 10.1109/JIOT.2017.2756025.
[59] Y.-T. Yang and H.-Y. Wei, “Edge–iot computing and networking resource allocation for decomposable deep learning inference,” IEEE Internet of Things Journal, vol. 10, no. 6, pp. 5178–5193, 2023. DOI: 10.1109/JIOT.2022.3222461.
[60] S. Liao, J.Wu, A. K. Bashir,W. Yang, J. Li, and U. Tariq, “Digital twin consensus for blockchain-enabled intelligent transportation systems in smart cities,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22 619–22 629, 2022. DOI: 10.1109/TITS.2021.3134002.
[61] J. Hartmanis, “Computers and intractability: A guide to the theory of np-completeness (michael r. garey and david s. johnson),” Siam Review, vol. 24, no. 1, p. 90, 1982.
[62] V. V. Vazirani, Approximation algorithms. Springer, 2001, vol. 1.
[63] I. Dinur and D. Steurer, “Analytical approach to parallel repetition,” in Proceedings of the forty-sixth annual ACM symposium on Theory of computing, 2014, pp. 624–633.
[64] P. Vaidya, “Speeding-up linear programming using fast matrix multiplication,” in Proceedings of 30th Annual Symposium on Foundations of Computer Science, 1989, pp. 332–337. DOI: 10.1109/SFCS.1989.63499.
[65] S. Sagar, A. Mahmood, K. Wang, Q. Z. Sheng, J. K. Pabani, and W. E. Zhang,“Trust–siot: Towards trustworthy object classification in the social internet of things,” IEEE Transactions on Network and Service Management, pp. 1–1, 2023. DOI: 10.
1109/TNSM.2023.3247831.
[66] Y. Gao, Z. Ye, H. Yu, Z. Xiong, Y. Xiao, and D. Niyato, “Multi-resource allocation for on-device distributed federated learning systems,” in Proceedings of 2022 IEEE Global Communications Conference, 2022, pp. 160–165. DOI: 10 . 1109 /GLOBECOM48099.2022.10000935.
[67] V. Loscri, G. Ruggeri, A. M. Vegni, and I. Cricelli, “Social structure analysis in internet of vehicles,” in Proceedings of 2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops), 2018, pp. 1–4. DOI: 10.1109/SECONW.2018.8396357.
[68] P. R. Desai, S. Mini, and D. K. Tosh, “Edge-based optimal routing in sdn-enabled industrial internet of things,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 18 898–18 907, 2022. DOI: 10.1109/JIOT.2022.3163228.
[69] X. Cai, L. Wang, Y. Hui, et al., “Coverage optimization for directional sensor networks: A novel sensor redeployment scheme,” IEEE Internet of Things Journal, vol. 10, no. 2, pp. 1461–1475, 2023. DOI: 10.1109/JIOT.2022.3208056.
[70] X. Zheng, L. Tian, B. Hui, and X. Liu, “Distributed and privacy preserving graph data collection in internet of thing systems,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9301–9309, 2022. DOI: 10.1109/JIOT.2021.3112186.
[71] Z. Lu, Y. Wang, X. Tong, C. Mu, Y. Chen, and Y. Li, “Data-driven many-objective crowd worker selection for mobile crowdsourcing in industrial iot,” IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 531–540, 2023. DOI: 10.1109/
TII.2021.3076811.
[72] C.-C. Fang, C.-C. Ho, and B.-R. Dai, “A greedy algorithm for budgeted multiple-product profit maximization in social network,” in Proceedings of 2022 23rd IEEE International Conference on Mobile Data Management (MDM), 2022, pp. 440–445.
DOI: 10.1109/MDM55031.2022.00096.
[73] Y. Hui, G. Zhao, C. Li, et al., “Digital twins enabled on-demand matching for multitask federated learning in hetvnets,” IEEE Transactions on Vehicular Technology, vol. 72, no. 2, pp. 2352–2364, 2023. DOI: 10.1109/TVT.2022.3211005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *