|
[1] D. Hettiachchi, V. Kostakos, and J. Goncalves, “A survey on task assignment in crowdsourcing,” ACM Comput. Surv., vol. 55, no. 3, 2022, ISSN: 0360-0300. DOI:10.1145/3494522. [Online]. Available: https://doi.org/10.1145/3494522. [2] J. Jiang, B. An, Y. Jiang, C. Zhang, Z. Bu, and J. Cao, “Group-oriented task allocation for crowdsourcing in social networks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 7, pp. 4417–4432, 2021. DOI: 10.1109/TSMC.2019.2933327. [3] X. Cheng, B. He, G. Li, and B. Cheng, “A survey of crowdsensing and privacy protection in digital city,” IEEE Transactions on Computational Social Systems, pp. 1–17, 2022. DOI: 10.1109/TCSS.2022.3204635. [4] X. Tao and W. Song, “Profit-oriented task allocation for mobile crowdsensing with worker dynamics: Cooperative offline solution and predictive online solution,” IEEE Transactions on Mobile Computing, vol. 20, no. 8, pp. 2637–2653, 2021. DOI: 10. 1109/TMC.2020.2983688. [5] L. Liu, L. Wang, Z. Lu, Y. Liu, W. Jing, and X. Wen, “Cost-and-quality aware data collection for edge-assisted vehicular crowdsensing,” IEEE Transactions on Vehicular Technology, vol. 71, no. 5, pp. 5371–5386, 2022. DOI: 10.1109/TVT.2022. 3151859. [6] L. Jiang, M. Alazab, and Z. Qin, “Secure task distribution with verifiable re-encryption in mobile crowdsensing assisted emergency iot system,” IEEE Internet of Things Journal, pp. 1–1, 2023. DOI: 10.1109/JIOT.2023.3272070. [7] J. Xu, G. Chen, Y. Zhou, Z. Rao, D. Yang, and C. Xie, “Incentive mechanisms for large-scale crowdsourcing task diffusion based on social influence,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp. 3731–3745, 2021. DOI: 10.1109/ TVT.2021.3063380. [8] J. Xu, Z. Luo, C. Guan, D. Yang, L. Liu, and Y. Zhang, “Hiring a team from social network: Incentive mechanism design for two-tiered social mobile crowdsourcing,” IEEE Transactions on Mobile Computing, pp. 1–1, 2022. DOI: 10.1109/TMC.2022.3162108. [9] J. Xu and C. Fung, “A risk-defined trust transitivity model for group decisions in social networks,” in Proceedings of 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), 2019, pp. 415–420. [10] K.-Y. Chen, C.-H. Wang, S.-H. Chiang, D.-N. Yang, W.-T. Chen, and J.-P. Sheu,“Collaboration between social internet of things and mobile users for accuracy-aware detection,” in Proceedings of 2021 IEEE International Conference on Communications, 2021, pp. 1–6. DOI: 10.1109/ICC42927.2021.9500871. [11] A. Hamrouni, T. Alelyani, H. Ghazzai, and Y. Massoud, “Toward collaborative mobile crowdsourcing,” IEEE Internet of Things Magazine, vol. 4, no. 2, pp. 88–94, 2021. DOI: 10.1109/IOTM.0001.2000185. [12] A. Hamrouni, H. Ghazzai, T. Alelyani, and Y. Massoud, “Low-complexity recruitment for collaborative mobile crowdsourcing using graph neural networks,” IEEE Internet of Things Journal, vol. 9, no. 1, pp. 813–829, 2022. DOI: 10.1109/JIOT. 2021.3086410. [13] G. Sciddurlo, I. Huso, D. Striccoli, G. Piro, and G. Boggia, “A multi-tiered social iot architecture for scalable and trusted service provisioning,” in Proceedings of 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6. DOI: 10. 1109/GLOBECOM46510.2021.9685084. [14] M. Ibrar, L.Wang, A. Akbar, et al., “3-d-sis: A 3-d-social identifier structure for collaborative edge computing based social iot,” IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp. 313–323, 2022. DOI: 10 . 1109 / TCSS . 2021 .3064716. [15] A. Kopponen, A. Hahto, P. Kettunen, et al., “Empowering citizens with digital twins: A blueprint,” IEEE Internet Computing, vol. 26, no. 5, pp. 7–16, 2022. DOI: 10. 1109/MIC.2022.3159683. [16] Z. Wang, R. Gupta, K. Han, et al., “Mobility digital twin: Concept, architecture, case study, and future challenges,” IEEE Internet of Things Journal, vol. 9, no. 18, pp. 17 452–17 467, 2022. DOI: 10.1109/JIOT.2022.3156028. [17] R. Minerva, G. M. Lee, and N. Crespi, “Digital twin in the iot context: A survey on technical features, scenarios, and architectural models,” Proceedings of the IEEE, vol. 108, no. 10, pp. 1785–1824, 2020. DOI: 10.1109/JPROC.2020.2998530. [18] F. AlMahamid, H. Lutfiyya, and K. Grolinger, “Virtual sensor middleware: Managing iot data for the fog-cloud platform,” in Proceedings of 2022 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2022, pp. 41–48. DOI: 10.1109/CCECE49351.2022.9918499. [19] A. Roy, S. Misra, and S. Nag, “Prime: An optimal pricing scheme for mobile sensors-as-a-service,” IEEE Transactions on Mobile Computing, vol. 21, no. 4, pp. 1362–1373, 2022. DOI: 10.1109/TMC.2020.3023885. [20] A. Gaddam, T.Wilkin, M. Angelova, and J. Gaddam, “Detecting sensor faults, anomalies and outliers in the internet of things: A survey on the challenges and solutions,” Electronics, vol. 9, no. 3, 2020, ISSN: 2079-9292. DOI: 10.3390/electronics9030511. [Online]. Available: https://www.mdpi.com/2079-9292/9/3/511. [21] Y. Li and X. Shen, “A novel wind speed-sensing methodology for wind turbines based on digital twin technology,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–13, 2022. DOI: 10.1109/TIM.2021.3139698. [22] M. Fahim, V. Sharma, T.-V. Cao, B. Canberk, and T. Q. Duong, “Machine learning-based digital twin for predictive modeling in wind turbines,” IEEE Access, vol. 10, pp. 14 184–14 194, 2022. DOI: 10.1109/ACCESS.2022.3147602. [23] J. Thieling, P. Elspas, and J. Roßmann, “Neural networks for end-to-end refinement of simulated sensor data for automotive applications,” in Proceedings of 2019 IEEE International Systems Conference (SysCon), 2019, pp. 1–8. DOI: 10.1109/SYSCON. 2019.8836918. [24] G. Agresti, H. Schaefer, P. Sartor, and P. Zanuttigh, “Unsupervised domain adaptation for tof data denoising with adversarial learning,” in Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 5579–5586. DOI: 10.1109/CVPR.2019.00573. [25] S. Misra and A. Chakraborty, “Qos-aware dispersed dynamic mapping of virtual sensors in sensor-cloud,” IEEE Transactions on Services Computing, vol. 14, no. 6, pp. 1970–1980, 2021. DOI: 10.1109/TSC.2019.2917447. [26] T. Liu, L. Tang,W.Wang, Q. Chen, and X. Zeng, “Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1427–1444, 2022. DOI: 10.1109/JIOT.2021.3086961. [27] Y. Lu, S. Maharjan, and Y. Zhang, “Adaptive edge association for wireless digital twin networks in 6g,” IEEE Internet of Things Journal, vol. 8, no. 22, pp. 16 219–16 230, 2021. DOI: 10.1109/JIOT.2021.3098508. [28] O. Chukhno, N. Chukhno, G. Araniti, C. Campolo, A. Iera, and A. Molinaro, “Placement of social digital twins at the edge for beyond 5g iot networks,” IEEE Internet of Things Journal, pp. 1–1, 2022. DOI: 10.1109/JIOT.2022.3190737. [29] C. He, T. H. Luan, R. Lu, Z. Su, and M. Dong, “Security and privacy in vehicular digital twin networks: Challenges and solutions,” IEEE Wireless Communications, pp. 1–8, 2022. DOI: 10.1109/MWC.002.2200015. [30] C. Altun, B. Tavli, and H. Yanikomeroglu, “Liberalization of digital twins of iot-enabled home appliances via blockchains and absolute ownership rights,” IEEE Communications Magazine, vol. 57, no. 12, pp. 65–71, 2019. DOI: 10.1109/MCOM.001. 1900072. [31] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and P. Bouvry, “A survey on mobile crowdsensing systems: Challenges, solutions, and opportunities,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2419–2465, 2019. DOI: 10.1109/COMST.2019.2914030. [32] X. Niu and S. Qin, “Integrating crowd-/service-sourcing into digital twin for advanced manufacturing service innovation,” Advanced Engineering Informatics, vol. 50, p. 101 422, 2021, ISSN: 1474-0346. DOI: https : / / doi . org / 10 . 1016 / j . aei.2021.101422. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1474034621001749. [33] J. Li, J. Jin, D. Yuan, and H. Zhang, “Virtual fog: A virtualization enabled fog computing framework for internet of things,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 121–131, 2018. DOI: 10.1109/JIOT.2017.2774286. [34] Y. Hui, X. Ma, Z. Su, et al., “Collaboration as a service: Digital-twin-enabled collaborative and distributed autonomous driving,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 18 607–18 619, 2022. DOI: 10.1109/JIOT.2022.3161677. [35] F. Sangoleye, N. Irtija, and E. E. Tsiropoulou, “Data acquisition in social internet of things based on contract theory,” in Proceedings of 2021 IEEE International Conference on Communications, 2021, pp. 1–6. DOI: 10.1109/ICC42927.2021.9500254. [36] A. Khelloufi, H. Ning, S. Dhelim, et al., “A social-relationships-based service recommendation system for siot devices,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1859–1870, 2021. DOI: 10.1109/JIOT.2020.3016659. [37] S. Dhelim, H. Ning, and N. Aung, “Compath: User interest mining in heterogeneous signed social networks for internet of people,” IEEE Internet of Things Journal, vol. 8, no. 8, pp. 7024–7035, 2021. DOI: 10.1109/JIOT.2020.3037109. [38] Y. Li, Z. Guo, T. Yang, L. Jiang, and M. Li, “Satisfied matching-embedded social internet of things for content preference-aware resource allocation in d2d underlaying cellular networks,” IEEE Internet of Things Journal, vol. 9, no. 11, pp. 8454–8468, 2022. DOI: 10.1109/JIOT.2021.3113914. [39] H. Elayan, M. Aloqaily, and M. Guizani, “Digital twin for intelligent context-aware iot healthcare systems,” IEEE Internet of Things Journal, vol. 8, no. 23, pp. 16 749–16 757, 2021. DOI: 10.1109/JIOT.2021.3051158. [40] Y. Liu, A. Yang, Q. Zeng, Y. Sun, J. Gao, and Z. Lv, “Task scheduling of real-time traffic information processing based on digital twins,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–9, 2022. DOI: 10 . 1109 / TITS . 2022 .3196166. [41] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE Internet of Things Journal, vol. 8, no. 18, pp. 13 789–13 804, 2021. DOI: 10.1109/JIOT. 2021.3079510. [42] Y. Hui, Q. Wang, N. Cheng, R. Chen, X. Xiao, and T. H. Luan, “Time or reward: Digital-twin enabled personalized vehicle path planning,” in Proceedings of 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6. DOI: 10.1109/GLOBECOM46510.2021.9685559. [43] H. Darvishi, D. Ciuonzo, E. R. Eide, and P. S. Rossi, “Sensor-fault detection, isolation and accommodation for digital twins via modular data-driven architecture,” IEEE Sensors Journal, vol. 21, no. 4, pp. 4827–4838, 2021. DOI: 10.1109/JSEN.2020.3029459. [44] S. Ali, T. Glass, B. Parr, J. Potgieter, and F. Alam, “Low cost sensor with iot lorawan connectivity and machine learning-based calibration for air pollution monitoring,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–11, 2021. DOI: 10.1109/TIM.2020.3034109. [45] L. Zhao, H. Chai, Y. Han, K. Yu, and S. Mumtaz, “A collaborative v2x data correction method for road safety,” IEEE Transactions on Reliability, vol. 71, no. 2, pp. 951–962, 2022. DOI: 10.1109/TR.2022.3159664. [46] Y. Liao, E. Hashemi, T. Wang, and B. Yang, “A learning-aided generic framework for fault detection and recovery of inertial sensors in automated driving systems,” IEEE Systems Journal, vol. 15, no. 2, pp. 3001–3011, 2021. DOI: 10.1109/JSYST.2020.3004805. [47] X. Wang, W. Zhou, and Y. Jia, “Attention gan for multipath error removal from tof sensors,” IEEE Sensors Journal, vol. 22, no. 20, pp. 19 713–19 721, 2022. DOI: 10.1109/JSEN.2022.3203759. [48] S. Goudarzi, A. Asif, and H. Rivaz, “Fast multi-focus ultrasound image recovery using generative adversarial networks,” IEEE Transactions on Computational Imaging, vol. 6, pp. 1272–1284, 2020. DOI: 10.1109/TCI.2020.3019137. [49] K. Zhang, J. Cao, S. Maharjan, and Y. Zhang, “Digital twin empowered content caching in social-aware vehicular edge networks,” IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp. 239–251, 2022. DOI: 10.1109/TCSS.2021.3068369. [50] X. Tao and A. S. Hafid, “Deepsensing: A novel mobile crowdsensing framework with double deep q-network and prioritized experience replay,” IEEE Internet of Things Journal, vol. 7, no. 12, pp. 11 547–11 558, 2020. DOI: 10 . 1109 / JIOT .2020.3022611. [51] L. Wang, D. Yang, Z. Yu, et al., “Acceptance-aware mobile crowdsourcing worker recruitment in social networks,” IEEE Transactions on Mobile Computing, vol. 22, no. 2, pp. 634–646, 2023. DOI: 10.1109/TMC.2021.3090764. [52] M. Fadda, M. Anedda, R. Girau, G. Pau, and D. D. Giusto, “A social internet of things smart city solution for traffic and pollution monitoring in cagliari,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2373–2390, 2023. DOI: 10.1109/JIOT. 2022.3211093. [53] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Communication-efficient federated learning and permissioned blockchain for digital twin edge networks,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2276–2288, 2021. DOI: 10.1109/JIOT.2020.3015772. [54] D. Rajavel, A. Chakraborty, and S. Misra, “Qos-aware sensor virtualization for provisioning green sensors-as-a-service,” IEEE Transactions on Green Communications and Networking, vol. 5, no. 3, pp. 1128–1137, 2021. DOI: 10.1109/TGCN.2021.3074473. [55] P. De Meo, E. Ferrara, D. Rosaci, and G. M. L. Sarné, “Trust and compactness in social network groups,” IEEE Transactions on Cybernetics, vol. 45, no. 2, pp. 205–216, 2015. DOI: 10.1109/TCYB.2014.2323892. [56] O. Chukhno, N. Chukhno, G. Araniti, C. Campolo, A. Iera, and A. Molinaro, “Optimal placement of social digital twins in edge iot networks,” Sensors, vol. 20, no. 21, 2020, ISSN: 1424-8220. DOI: 10.3390/s20216181. [Online]. Available: https://www.mdpi.com/1424-8220/20/21/6181. [57] H. Darvishi, D. Ciuonzo, and P. S. Rossi, “Real-time sensor fault detection, isolation and accommodation for industrial digital twins,” in Proceedings of 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC), vol. 1, 2021, pp. 1–6. DOI: 10.1109/ICNSC52481.2021.9702175. [58] T. Yu, X. Wang, and A. Shami, “Recursive principal component analysis-based data outlier detection and sensor data aggregation in iot systems,” IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2207–2216, 2017. DOI: 10.1109/JIOT.2017.2756025. [59] Y.-T. Yang and H.-Y. Wei, “Edge–iot computing and networking resource allocation for decomposable deep learning inference,” IEEE Internet of Things Journal, vol. 10, no. 6, pp. 5178–5193, 2023. DOI: 10.1109/JIOT.2022.3222461. [60] S. Liao, J.Wu, A. K. Bashir,W. Yang, J. Li, and U. Tariq, “Digital twin consensus for blockchain-enabled intelligent transportation systems in smart cities,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 22 619–22 629, 2022. DOI: 10.1109/TITS.2021.3134002. [61] J. Hartmanis, “Computers and intractability: A guide to the theory of np-completeness (michael r. garey and david s. johnson),” Siam Review, vol. 24, no. 1, p. 90, 1982. [62] V. V. Vazirani, Approximation algorithms. Springer, 2001, vol. 1. [63] I. Dinur and D. Steurer, “Analytical approach to parallel repetition,” in Proceedings of the forty-sixth annual ACM symposium on Theory of computing, 2014, pp. 624–633. [64] P. Vaidya, “Speeding-up linear programming using fast matrix multiplication,” in Proceedings of 30th Annual Symposium on Foundations of Computer Science, 1989, pp. 332–337. DOI: 10.1109/SFCS.1989.63499. [65] S. Sagar, A. Mahmood, K. Wang, Q. Z. Sheng, J. K. Pabani, and W. E. Zhang,“Trust–siot: Towards trustworthy object classification in the social internet of things,” IEEE Transactions on Network and Service Management, pp. 1–1, 2023. DOI: 10. 1109/TNSM.2023.3247831. [66] Y. Gao, Z. Ye, H. Yu, Z. Xiong, Y. Xiao, and D. Niyato, “Multi-resource allocation for on-device distributed federated learning systems,” in Proceedings of 2022 IEEE Global Communications Conference, 2022, pp. 160–165. DOI: 10 . 1109 /GLOBECOM48099.2022.10000935. [67] V. Loscri, G. Ruggeri, A. M. Vegni, and I. Cricelli, “Social structure analysis in internet of vehicles,” in Proceedings of 2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops), 2018, pp. 1–4. DOI: 10.1109/SECONW.2018.8396357. [68] P. R. Desai, S. Mini, and D. K. Tosh, “Edge-based optimal routing in sdn-enabled industrial internet of things,” IEEE Internet of Things Journal, vol. 9, no. 19, pp. 18 898–18 907, 2022. DOI: 10.1109/JIOT.2022.3163228. [69] X. Cai, L. Wang, Y. Hui, et al., “Coverage optimization for directional sensor networks: A novel sensor redeployment scheme,” IEEE Internet of Things Journal, vol. 10, no. 2, pp. 1461–1475, 2023. DOI: 10.1109/JIOT.2022.3208056. [70] X. Zheng, L. Tian, B. Hui, and X. Liu, “Distributed and privacy preserving graph data collection in internet of thing systems,” IEEE Internet of Things Journal, vol. 9, no. 12, pp. 9301–9309, 2022. DOI: 10.1109/JIOT.2021.3112186. [71] Z. Lu, Y. Wang, X. Tong, C. Mu, Y. Chen, and Y. Li, “Data-driven many-objective crowd worker selection for mobile crowdsourcing in industrial iot,” IEEE Transactions on Industrial Informatics, vol. 19, no. 1, pp. 531–540, 2023. DOI: 10.1109/ TII.2021.3076811. [72] C.-C. Fang, C.-C. Ho, and B.-R. Dai, “A greedy algorithm for budgeted multiple-product profit maximization in social network,” in Proceedings of 2022 23rd IEEE International Conference on Mobile Data Management (MDM), 2022, pp. 440–445. DOI: 10.1109/MDM55031.2022.00096. [73] Y. Hui, G. Zhao, C. Li, et al., “Digital twins enabled on-demand matching for multitask federated learning in hetvnets,” IEEE Transactions on Vehicular Technology, vol. 72, no. 2, pp. 2352–2364, 2023. DOI: 10.1109/TVT.2022.3211005.
|