|
[1] Abad, C. L., Roberts, N., Lu, Y., and Campbell, R. H. A storage-centric anal- ysis of mapreduce workloads: File popularity, temporal locality and arrival patterns. In 2012 IEEE International Symposium on Workload Characteriza- tion (IISWC) (2012), pp. 100–109. [2] Aho, A. V., Denning, P. J., and Ullman, J. D. Principles of optimal page re- placement. Journal of the ACM (JACM) 18, 1 (1971), 80–93. [3] Ananthanarayanan, G., Ghodsi, A., Warfield, A., Borthakur, D., Kandula, S., Shenker, S., and Stoica, I. Pacman: Coordinated memory caching for parallel jobs. In NSDI (Apr. 2012). [4] Asad, O., and Kemme, B. Adaptcache: Adaptive data partitioning and mi- gration for distributed object caches. In Proceedings of the 17th International Middleware Conference (2016), pp. 1–13. [5] Borst, S., Gupta, V., and Walid, A. Distributed caching algorithms for content distribution networks. In INFOCOM (2010), pp. 1–9. [6] Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. Web caching and zipf-like distributions: Evidence and implications. In IEEE INFOCOM (1999), vol. 1, pp. 126–134. [7] Busari, M., and Williamson, C. Prowgen: a synthetic workload generation tool for simulation evaluation of web proxy caches. Computer Networks 38, 6 (2002), 779–794. [8] Chou, J., Wu, K., et al. Fastquery: A parallel indexing system for scientific data. In IEEE CLUSTER (2011), pp. 455–464. [9] Cidon, A., Eisenman, A., Alizadeh, M., and Katti, S. Cliffhanger: Scaling performance cliffs in web memory caches. In NSDI (Mar. 2016), pp. 379–392. [10] Dahlin, M. D., Wang, R. Y., Anderson, T. E., and Patterson, D. A. Cooperative caching: Using remote client memory to improve file system performance. In OSDI (Nov. 1994). [11] Dean, J., and Ghemawat, S. Mapreduce: simplified data processing on large clusters. Communications of the ACM 51, 1 (2008), 107–113. [12] Hadoop. https://hadoop.apache.org [13] Hu, X., Wang, X., Li, Y., Zhou, L., Luo, Y., Ding, C., Jiang, S., and Wang, Z. LAMA: Optimized locality-aware memory allocation for key-value cache. In USENIX ATC (July 2015), pp. 57–69. [14] Jiang, S., Chen, F., and Zhang, X. Clock-pro: An effective improvement of the clock replacement. In USENIX ATC (2005), pp. 323–336. [15] Jiang, S., Petrini, F., Ding, X., and Zhang, X. A locality-aware cooperative cache management protocol to improve network file system performance. In ICDCS (2006), pp. 42–42. [16] Jiang, S., and Zhang, X. Lirs: An efficient low inter-reference recency set replacement policy to improve buffer cache performance. ACM SIGMETRICS Performance Evaluation Review 30, 1 (2002), 31–42. [17] Li, B., Yan, B., and Li, H. An overview of in-memory processing with emerg- ing non-volatile memory for data-intensive applications. In Great Lakes Sym- posium on VLSI (2019), p. 381–386. [18] Li, H., Ghodsi, A., Zaharia, M., Shenker, S., and Stoica, I. Tachyon: Reliable, memory speed storage for cluster computing frameworks. In SOCC (2014), pp. 1–15. [19] Memcached. https://memcached.org/. [20] O’neil, E. J., O’neil, P. E., and Weikum, G. The lru-k page replacement algo- rithm for database disk buffering. Acm Sigmod Record 22, 2 (1993), 297–306. [21] Optimizer, I. I. C. https://www.ibm.com/analytics/cplex-optimizer. [22] Podlipnig, S., and Böszörmenyi, L. A survey of web cache replacement strate- gies. ACM Computing Surveys (CSUR) 35, 4 (2003), 374–398. [23] Redis. https://redis.io/. [24] Sarkar, P., and Hartman, J. H. Hint-based cooperative caching. ACM Trans. Comput. Syst. 18, 4 (nov 2000), 387–419. [25] Sergeev, A., and Del Balso, M. Horovod: fast and easy distributed deep learn- ing in tensorflow. arXiv preprint arXiv:1802.05799 (2018). [26] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The hadoop distributed file system. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (2010), p. 1–10. [27] Spark. https://hadoop.apache.org/. [28] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. Chord: A scalable peer-to-peer lookup service for internet applications. SIG- COMM Computer Communication Review 31, 4 (2001), 149–160 [29] Wan, L., Huebl, A., Gu, J., Poeschel, F., Gainaru, A., Wang, R., Chen, J., Liang, X., Ganyushin, D., Munson, T., Foster, I., Vay, J., Podhorszki, N., Wu, K., and Klasky, S. Improving i/o performance for exascale applications through online data layout reorganization. IEEE Transactions on Parallel & Distributed Systems 33, 04 (apr 2022), 878–890. [30] Yu, Y., Wang, W., Zhang, J., and Ben Letaief, K. Lrc: Dependency-aware cache management for data analytics clusters. In IEEE INFOCOM 2017 - IEEE Conference on Computer Communications (2017), pp. 1–9. [31] Yu, Y., Zhang, C., Wang, W., Zhang, J., and Letaief, K. Towards dependency- aware cache management for data analytics applications. IEEE Transactions on Cloud Computing (2019). |