|
[1] D. E. Knuth, J. H. Morris Jr., and V. R. Pratt, “Fast Pattern Matching in Strings”, SIAM J. Comput., no. 2, pp. 323–350, 1977, doi: 10.1137/0206024. [2] R. S. Boyer and J. S. Moore, “A Fast String Searching Algorithm”, Commun. ACM, no. 10, pp. 762–772, 1977, doi: 10.1145/359842.359859. [3] R. M. Karp and M. O. Rabin, “Efficient Randomized Pattern-Matching Algorithms”, IBM J. Res. Dev., no. 2, pp. 249–260, 1987, doi: 10.1147/rd.312.0249. [4] P. Weiner, “Linear Pattern Matching Algorithms”, IEEE Computer Society, 1973, pp. 1–11. doi: 10.1109/SWAT.1973.13. [5] M. Farach, “Optimal Suffix Tree Construction with Large Alphabets”, IEEE Computer Society, 1997, pp. 137–143. doi: 10.1109/SFCS.1997.646102. [6] E. Fredkin, “Trie memory”, Commun. ACM, no. 9, pp. 490–499, 1960, doi: 10.1145/367390.367400. [7] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins”, Journal of Molecular Biology, no. 3, pp. 443–453, 1970, doi: https://doi.org/10.1016/0022-2836(70)90057-4. [8] S. C. Hinds, J. L. Fisher, and D. P. D'Amato, “A document skew detection method using run-length encoding and the Hough transform”, IEEE, 1990, pp. 464–468. doi: 10.1109/ICPR.1990.118147. [9] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression”, IEEE Trans. Inf. Theory, no. 3, pp. 337–343, 1977, doi: 10.1109/TIT.1977.1055714. [10] ITU-T, “T.4 : Standardization of Group 3 facsimile terminals for document transmission”, Feb. 2004. Available: https://www.itu.int/rec/T-REC-T.4-200307-I/en [11] ISO, ISO\slash IEC 10918-1:1994: Information technology — Digital compression and coding of continuous-tone still images: Requirements and guidelines. Geneva, Switzerland: International Organization for Standardization, 1994, p. 182. Available: http://www.iso.ch/cate/d18902.html [12] ISO, ISO 12639:1998: Graphic technology — Prepress digital data exchange — Tag image file format for image technology (TIFF/IT). Geneva, Switzerland: International Organization for Standardization, 1998, p. 43. Available: http://www.iso.ch/cate/d2181.html [13] A. Apostolico, G. M. Landau, and S. Skiena, “Matching for Run-Length Encoded Strings”, J. Complex., no. 1, pp. 4–16, 1999, doi: 10.1006/jcom.1998.0493. [14] S. Hooshmand, N. Tavakoli, P. Abedin, and S. V. Thankachan, “On Computing Average Common Substring Over Run Length Encoded Sequences”, Fundam. Informaticae, no. 3, pp. 267–273, 2018, doi: 10.3233/FI-2018-1743. [15] K.-Y. Chen and K.-M. Chao, “A Fully Compressed Algorithm for Computing the Edit Distance of Run-Length Encoded Strings”, Algorithmica, no. 2, pp. 354–370, 2013, doi: 10.1007/s00453-011-9592-4. [16] R. Clifford, P. Gawrychowski, T. Kociumaka, D. P. Martin, and P. Uznanski, “RLE Edit Distance in Near Optimal Time”, P. Rossmanith, P. Heggernes, and J.-P. Katoen, Eds., in LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 1–13. doi: 10.4230/LIPIcs.MFCS.2019.66. [17] R. Hariharan and V. Vinay, “String matching in {\tilde O}(\sqrt{n}+\sqrt{m}) quantum time”, J. Discrete Algorithms, no. 1, pp. 103–110, 2003, doi: 10.1016/ S1570-8667(03)00010-8. [18] L. K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”, G. L. Miller, Ed., ACM, 1996, pp. 212–219. doi: 10.1145/237814.237866. [19] U. Vishkin, “Deterministic Sampling-A New Technique for Fast Pattern Matching”, H. Ortiz, Ed., ACM, 1990, pp. 170–180. doi: 10.1145/100216.100235. [20] F. LeGall and S. Seddighin, “Quantum Meets Fine-Grained Complexity: Sublinear Time Quantum Algorithms for String Problems”, M. Braverman, Ed., in LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 1–23. doi: 10.4230/LIPIcs.ITCS. 2022.97. [21] S. Akmal and C. Jin, “Near-Optimal Quantum Algorithms for String Problems”, J. (Seffi) Naor and N. Buchbinder, Eds., SIAM, 2022, pp. 2791–2832. doi: 10.1137/1.9781611977073.109. [22] D. Kempa and T. Kociumaka, “String synchronizing sets: sublinear-time BWT construction and optimal LCE data structure”, M. Charikar and E. Cohen, Eds., ACM, 2019, pp. 756–767. doi: 10.1145/3313276.3316368. [23] F. Magniez, A. Nayak, J. Roland, and M. Santha, “Search via Quantum Walk”, SIAM J. Comput., no. 1, pp. 142–164, 2011, doi: 10.1137/090745854. [24] D. Gibney and S. V. Thankachan, “Compressibility-Aware Quantum Algorithms on Strings”, CoRR, 2023, doi: 10.48550/arXiv.2302.07235. [25] A. M. Childs and J. M. Eisenberg, “Quantum algorithms for subset finding”, Quantum Inf. Comput., no. 7, pp. 593–604, 2005, doi: 10.26421/QIC5.7-7. [26] G. Brassard and P. Høyer, “An Exact Quantum Polynomial-Time Algorithm for Simon's Problem”, IEEE Computer Society, 1997, pp. 12–23. doi: 10.1109/ISTCS.1997.595153. [27] L. K. Grover, “Quantum Computers Can Search Rapidly by Using Almost Any Transformation”, Phys. Rev. Lett., no. 19, pp. 4329–4332, 1998, doi: 10.1103/PhysRevLett. 80.4329. [28] C. Dürr and P. Høyer, “A Quantum Algorithm for Finding the Minimum”, CoRR, 1996, Available: http://arxiv.org/abs/quant-ph/9607014 [29] A. Ambainis, “Quantum Walk Algorithm for Element Distinctness”, SIAM J. Comput., no. 1, pp. 210–239, 2007, doi: 10.1137/S0097539705447311. [30] P. Høyer, M. Mosca, and R. de Wolf, “Quantum Search on Bounded-Error Inputs”, J. C. M. Baeten, J. K. Lenstra, J. Parrow, and G. J. Woeginger, Eds., in Lecture Notes in Computer Science. Springer, 2003, pp. 291–299. doi: 10.1007/3-540-45061-0\_25. [31] W. W. Pugh, “Skip Lists: A Probabilistic Alternative to Balanced Trees”, Commun. ACM, no. 6, pp. 668–676, 1990, doi: 10.1145/78973.78977. [32] H. Buhrman, B. Loff, S. Patro, and F. Speelman, “Limits of Quantum Speed-Ups for Computational Geometry and Other Problems: Fine-Grained Complexity via Quantum Walks”, M. Braverman, Ed., in LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 1–12. doi: 10.4230/LIPIcs.ITCS.2022.31.
|