帳號:guest(3.144.92.235)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝 璞
作者(外文):Saxena, Apoorv
論文名稱(中文):基於RNN 模型的GRU和LSTM方法結合AES 加密與智慧合約進行來源身份驗證
論文名稱(外文):AES Encryption and RNN-based Models GRU and LSTM Methods for Source Authentication with Smart Contracts
指導教授(中文):孫宏民
指導教授(外文):Sun, Hung-Min
口試委員(中文):許富皓
黃育綸
口試委員(外文):Hsu, Fu-Hau
Huang, Yu-Lun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:109062423
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:52
中文關鍵詞:區塊鏈深度神經網路智慧合約來源認證高級加密標準(AES)
外文關鍵詞:BlockchainAdvanced Encryption Standard(AES)Deep Neural NetworksSmart ContractSource Authentication
相關次數:
  • 推薦推薦:0
  • 點閱點閱:89
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了解決具有相同訊息的來源身份驗證問題,本研究提出了一種混合架構,
其中通過使用深度學習神經網路發現數據集中的重複項。而區塊鏈部分為訊息
源提供了不同的元數據,使發送者和接收者都能夠意識到訊息是準確的,不能
被修改或更改。
此外,該系統還部署了基於RNN 的LSTM 和GRU 模型神經網路,以確保
該方法在本系統應用中是否表現更好,並利用以太坊區塊鏈在雙方之間進行交
易。此外,我們的系統還使用了高級加密標準(AES)技術來保護它們。在這
裡AES技術使用加密和解密密鑰方式。這個系統結構的想法已經在樹莓派設備
上執行並在小系統流程圖中研究了它的可行性。
最後,本研究使用的數據集是來自Kaggle 網站的“圖像加密和解密數據
集”,性能結果表明,與GRU 相比,LSTM 算法在特定數據集中的準確率達
到0.9635。智慧合約模組具有可驗證性、可用性、防篡改和可行性4 個屬性,
而AES 為系統提供了更強大的加密方法。
To address the problem of source authentication and duplicated information,
this study proposes a hybrid architecture in which duplicates in the dataset are

found using a neural network. While the blockchain part provides a distinct in-
formation source, enabling both the sender and the recipient to know that the

information is accurate and cannot be modified or altered. I have deployed RNN-
based LSTM and GRU models in the neural networks to determine whether the

method performs better in these applications. I have also utilized the Ethereum

blockchain to carry out transactions between the two parties and used the Ad-
vanced Encryption Standard(AES) technique to protect them. Here, encryption

and decryption keys are on the AES technique. I have used Raspberry Pi to
implement it to look into its feasibility in small systems.
The dataset used in this paper is the “Image encryption and decryption dataset”
by Kaggle and the performance results show that the LSTM algorithm performs
well compared to GRU yielding a 0.9635 accuracy rate on the particular dataset.
Our smart contract module has 4 properties which are verifiability, availability,
tamper-resistance, and usability while AES provides a stronger encryption method
for the system.
Abstract (Chinese) I
Abstract II
Acknowledgements III
Contents IV
List of Figures VI
List of Tables VIII
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 Ethereum Blockchain . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Transaction and Gas . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.4 Difference Between Contract and Traditional Smart Contract 8
1.4.5 Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . . . . . 9
IV
1.6 Decentralized Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Related Works 12
3 Proposed Methodology 18
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Data Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 AES Encryption: . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Smart Contract for Light Devices . . . . . . . . . . . . . . . . . . . 25
3.5 Deep learning - GRU and LSTM Algorithm . . . . . . . . . . . . . 28
3.6 Gated Recurrent Unit- GRU algorithm . . . . . . . . . . . . . . . . 29
3.7 LSTM ( Long Short Term Memory Algorithm) . . . . . . . . . . . . 31
4 Evaluation Results and Discussion 35
4.1 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5 Conclusion 40
6 Discussion and Future Work 42
Bibliography 44
Ruddick, G. (2017). Experts sound alarm over news websites’ fake news
twins’. The Guardian. [online] Available at:
https://www.theguardian.com/technology/2017/aug/18/
experts-sound-alarm-over-news-websites-fake-news-twins
[2] Ugly Twins: a novel type of attacks on local independent media in Serbia,”
Reporters Without Borders [online] Available at: https://rsf.org/en/
ugly-twins-novel-type-attacks-local-independent-media-serbia
[3] Shu, K., Bernard, H. R., Liu, H. (2019). Studying fake news via network
analysis: detection and mitigation. In Emerging research challenges and
opportunities in computational social network analysis and mining (pp.
43-65). Springer, Cham [online] Available at:
https:https://arxiv.org/abs/1804.10233
[4] Tacchini, E., Ballarin, G., Della Vedova, M. L., Moret, S., de Alfaro, L.
(2017). Some like it hoax: Automated fake news detection in social networks
Available at: https://arxiv.org/abs/1704.07506
[5] Qayyum, A., Qadir, J., Janjua, M. U., Sher, F. (2019). Using blockchain to
rein in the new post-truth world and check the spread of fake news. IT
Professional, 21(4), 16-24. https://arxiv.org/abs/1903.11899
[6] Rodier, S., Carter, D. (2020, May). Online near-duplicate detection of news
articles. In Proceedings of The 12th Language Resources and Evaluation
Conference (pp. 1242-1249).
https://aclanthology.org/2020.lrec-1.156/
[7] Mathew, M., Das, S. N., Vijayaraghavan, P. K. (2011). A novel approach for
near-duplicate detection of web pages using TDW matrix. International
Journal of Computer Applications, 19(7), 16-21. .
https://www.ijcaonline.org/archives/volume19/number7/2374-3128
[8] Hajishirzi, H., Yih, W. T., Kolcz, A. (2010, July). Adaptive near-duplicate
detection via similarity learning. In Proceedings of the 33rd international
ACM SIGIR conference on Research and development in information
retrieval (pp. 419-426).
https://dl.acm.org/doi/abs/10.1145/1835449.1835520.
[9] Wang, J. H., Chang, H. C. (2009, October). Exploiting sentence-level
features for near-duplicate document detection. In Asia Information
Retrieval Symposium (pp. 205-217). Springer, Berlin, Heidelberg.
https://dl.acm.org/doi/abs/10.1007/978-3-642-04769-5_18
[10] Szabo, N. (1997). Formalizing and securing relationships on public networks,
First Monday
https://firstmonday.org/ojs/index.php/fm/article/view/548
[11] Roberto Cavazos, (2019). Exclusive: Fake news is costing the world 78
billion a year. Retrieved November 23, 2020, https://cheddar.com/media/
exclusive-fakenews-is-costing-the-world-billion-a-year
[12] Srivastava, S. (2012). Duplicity, intimacy, community: An ethnography of
ID cards, permits and other fake documents in Delhi. Thesis Eleven, 113(1),
78-93
https://journals.sagepub.com/doi/full/10.1177/0725513612456686
[13] Abdibayev, A., Chen, D., Chen, H., Poluru, D., Subrahmanian, V. S. (2021).
Using Word Embeddings to Deter Intellectual Property Theft through
Automated Generation of Fake Documents. ACM Transactions on
Management Information Systems (TMIS), 12(2), 1-22.
https://haipeng-chen.github.io/files/21tmis-we-forge.pdf
[14] Dustdar, S., Fern´andez, P., Garc´ıa, J. M., Ruiz-Cort´es, A. (2021). Elastic
Smart Contracts in Blockchains. IEEE/CAA Journal of Automatica Sinica,
8(12), 1901-1912 https:
//www.ieee-jas.net/en/article/doi/10.1109/JAS.2021.1004222
[15] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han and F. -Y. Wang,
”Blockchain-Enabled Smart Contracts: Architecture, Applications, and
Future Trends,” in IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 11, pp. 2266-2277, Nov. 2019, doi:
10.1109/TSMC.2019.2895123.
https://ieeexplore.ieee.org/document/8643084
[16] Alcaide, A., Palomar, E., Montero-Castillo, J., Ribagorda, A. (2013).
Anonymous authentication for privacy-preserving IoT target-driven
applications. Computers Security, 37, 111-123.
http://www.open-access.bcu.ac.uk/260/
[17] Ammar, M., Russello, G., Crispo, B. (2018). Internet of Things: A survey
on the security of IoT frameworks. Journal of Information Security and
Applications, 38, 8-27 https:
//iranarze.ir/wp-content/uploads/2018/02/E5779-IranArze.pdf
[18] Dhillon, P. K., Kalra, S. (2017). A lightweight biometrics-based remote user
authentication scheme for IoT services. Journal of Information Security and
Applications, 34, 255-270. https://www.sciencedirect.com/science/
article/abs/pii/S2214212616301442
[19] Dorri, A., Kanhere, S. S., Jurdak, R., Gauravaram, P. (2017). Blockchain
for IoT security and privacy: The case study of a smart home. Paper
presented at the 2017 IEEE international conference on pervasive computing
and communications workshops (PerCom workshops).
https://ieeexplore.ieee.org/document/7917634
[20] Hammi, M. T., Hammi, B., Bellot, P., Serhrouchni, A. (2018). Bubbles of
Trust: A decentralized blockchain-based authentication system for IoT.
Computers Security, 78, 126-142.. https:
//www.sciencedirect.com/science/article/pii/S0167404818300890
[21] Khan, M. A., Salah, K. (2018). IoT security: Review, blockchain solutions,
and open challenges. Future Generation Computer Systems, 82, 395-411.
https:
//www.sciencedirect.com/science/article/pii/S0167739X17315765
[22] Manzoor, A., Liyanage, M., Braeke, A., Kanhere, S. S., Ylianttila, M.
(2019). Blockchain-based proxy re-encryption scheme for secure IoT data
sharing. Paper presented at the 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC).
https://arxiv.org/ftp/arxiv/papers/1811/1811.02276.pdf
[23] Novo, O. (2018). Blockchain meets IoT: An architecture for scalable access
management in IoT. IEEE Internet of Things Journal, 5(2), 1184-1195. .
https://ieeexplore.ieee.org/document/8306880
[24] Panarello, A., Tapas, N., Merlino, G., Longo, F., Puliafito, A. (2018).
Blockchain and iot integration: A systematic survey. Sensors, 18(8), 2575.
https://www.mdpi.com/1424-8220/18/8/2575
[25] Porambage, P., Schmitt, C., Kumar, P., Gurtov, A., Ylianttila, M. (2014).
Two-phase authentication protocol for wireless sensor networks in
distributed IoT applications. Paper presented at the 2014 IEEE Wireless
Communications and Networking Conference (WCNC).
https://ieeexplore.ieee.org/document/6952860
[26] Wang, X., Zha, X., Ni, W., Liu, R. P., Guo, Y. J., Niu, X., Zheng, K.
(2019). Survey on blockchain for Internet of Things. Computer
Communications, 136, 10-29.
https://ieeexplore.ieee.org/document/8306880
[27] Xu, R., Chen, Y., Blasch, E., Chen, G. (2018). Blendcac: A
blockchain-enabled decentralized capability-based access control for iots.
Paper presented at the 2018 IEEE International Conference on Internet of
Things (iThings) https://arxiv.org/pdf/1804.09267.pdf
[28] https://www.kaggle.com/code/rahuldshetty/image-encryption-anddecryption/data https://www.kaggle.com/code/rahuldshetty/
image-encryption-and-decryption/data
[29] Figueira, A., Oliveira, L. (2017). The current state of fake news: challenges ´
and opportunities. Procedia Computer Science, 121, 817-825.
https://arxiv.org/pdf/1804.09267.pdf
[30] Girgis, S., Amer, E., Gadallah, M. (2018, December). Deep learning
algorithms for detecting fake news in online text. In 2018 13th international
conference on computer engineering and systems (ICCES) (pp. 93-97).
IEEE. https://arxiv.org/pdf/1804.09267.pdf
[31] Yu, Y., Si, X., Hu, C., Zhang, J. (2019). A review of recurrent neural
networks: LSTM cells and network architectures. Neural computation,
31(7), 1235-1270. https://arxiv.org/pdf/1804.09267.pdf
[32] R. Dey and F. M. Salem, ”Gate-variants of Gated Recurrent Unit (GRU)
neural networks,” 2017 IEEE 60th International Midwest Symposium on
Circuits and Systems (MWSCAS), 2017, pp. 1597-1600, doi:
10.1109/MWSCAS.2017.8053243.
https://arxiv.org/pdf/1804.09267.pdf
[33] Fraga-Lamas, P., Fern´andez-Caram´es, T. M. (2020). Fake news,
disinformation, and deepfakes: Leveraging distributed ledger technologies
and blockchain to combat digital deception and counterfeit reality. IT
Professional, 22(2), 53-59.
https://ieeexplore.ieee.org/abstract/document/9049288
[34] Cherubini, M., De Oliveira, R., Oliver, N. (2009, October). Understanding
near-duplicate videos: a user-centric approach. In Proceedings of the 17th
ACM international conference on Multimedia (pp. 35-44).
https://dl.acm.org/doi/abs/10.1145/1631272.1631280
[35] Ramadhan, H. F., Putra, F. A., Sari, R. F. (2021, October). News
Verification using Ethereum Smart Contract and Inter Planetary File
System (IPFS). In 2021 13th International Conference on Information
Communication Technology and System (ICTS) (pp. 96-100). IEEE.
https://ieeexplore.ieee.org/abstract/document/9646438
[36] Ramachandran, G., Nemeth, D., Neville, D., Zhelezov, D., Yal¸cin, A.,
Fohrmann, O., Krishnamachari, B. (2020, November). WhistleBlower:
towards A decentralized and open platform for spotting fake news. In 2020
IEEE International Conference on Blockchain (Blockchain) (pp. 154-161).
IEEE. https://ieeexplore.ieee.org/abstract/document/9284670
[37] Behera, A., Nayak, B. K., Subhadarshan, S., Nath, N. (2022). CryptedWe:
An End-to-Encryption with Fake News Detection Messaging System. In
Biologically Inspired Techniques in Many Criteria Decision Making (pp.
107-117). Springer, Singapore.
https://link.springer.com/chapter/10.1007/978-981-16-8739-6_9
[38] Singhal, S., Shah, R. R., Chakraborty, T., Kumaraguru, P., Satoh, S. I.
(2019, September). Spotfake: A multi-modal framework for fake news
detection. In 2019 IEEE fifth international conference on multimedia big
data (BigMM) (pp. 39-47). IEEE.
https://ieeexplore.ieee.org/abstract/document/8919302
[39] Antoun, W., Baly, F., Achour, R., Hussein, A., Hajj, H. (2020, February).
State of the art models for fake news detection tasks. In 2020 IEEE
international conference on informatics, IoT, and enabling technologies
(ICIoT) (pp. 519-524). IEEE. https://doi.org/10.1117/12.2646927
[40] Dannen, C. (2017). Solidity programming. In Introducing Ethereum and
solidity (pp. 69-88). Apress, Berkeley, CA.
https://link.springer.com/book/10.1007/978-1-4842-2535-6
[41] Rust Programming Language, https://www.rust-lang.org/,
journal=Rust Programming Language
[42] Yasin, A., Liu, L. (2016, June). An online identity and smart contract
management system. In 2016 IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC) (Vol. 2, pp. 192-198). IEEE. https:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7552202
[43] Dylag, M., Smith, H. (2021). From cryptocurrencies to cryptocourts:
blockchain and the financialization of dispute resolution platforms.
Information, Communication Society, 1-16. https:
//www.tandfonline.com/doi/full/10.1080/1369118X.2021.1942958
[44] Mahjabin, T., Xiao, Y., Sun, G., Jiang, W. (2017). A survey of distributed
denial-of-service attack, prevention, and mitigation techniques. International
Journal of Distributed Sensor Networks, 13(12), 1550147717741463.
https://journals.sagepub.com/doi/full/10.1177/1550147717741463
[45] Mishra, A. R., Panchal, V. K. (2022). A novel approach to capture the
similarity in summarized text using embedded model. International Journal
on Smart Sensing and Intelligent Systems, 15(1), 1-20.
https://sciendo.com/it/article/10.21307/ijssis-2022-0002
[46] Panarello, A., Tapas, N., Merlino, G., Longo, F., Puliafito, A. (2018).
Blockchain and iot integration: A systematic survey. Sensors, 18(8), 2575.
https://www.mdpi.com/1424-8220/18/8/2575
[47] Buterin, V. (2016). What is ethereum?. Ethereum Official webpage.
Available: http:
//www.ethdocs.org/en/latest/introduction/what-is-ethereum.html.

[48] Singh, B., Sharma, D. K. (2021). Predicting image credibility in fake news
over social media using multi-modal approach. Neural Computing and
Applications, 1-15.
https://link.springer.com/article/10.1007/s00521-021-06086-4
[49] Alfrhan, A., Moulahi, T., Alabdulatif, A. (2021). Comparative study on
hash functions for lightweight blockchain in Internet of Things (IoT).
Blockchain: Research and Applications, 2(4), 100036 https:
//www.sciencedirect.com/science/article/pii/S2096720921000312
[50] Huang, J., Kong, L., Chen, G., Wu, M. Y., Liu, X., Zeng, P. (2019).
Towards secure industrial IoT: Blockchain system with credit-based
consensus mechanism. IEEE Transactions on Industrial Informatics, 15(6),
3680-3689. https://ieeexplore.ieee.org/abstract/document/8661654
[51] St´erin, T., Farrugia, N., Gripon, V. (2017). An intrinsic difference between
vanilla rnns and gru models. COGNTIVE, 84, 2017.
[52] G. Almashaqbeh, A. Bishop and J. Cappos, ”ABC: A
Cryptocurrency-Focused Threat Modeling Framework,” IEEE INFOCOM
2019 - IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), 2019, pp. 859-864, doi:
10.1109/INFCOMW.2019.8845101.
https://ieeexplore.ieee.org/abstract/document/8845101
[53] Khan, R., McLaughlin, K., Laverty, D., Sezer, S. (2017, September).
STRIDE-based threat modeling for cyber-physical systems. In 2017 IEEE
PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)
(pp. 1-6). IEEE.
https://ieeexplore.ieee.org/abstract/document/8260283
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *