帳號:guest(18.218.62.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):趙柏鈞
作者(外文):Chao, Po-Chun
論文名稱(中文):大規模四旋翼無人機系統強健性分散式 H∞攻擊容忍基於觀測器編隊追蹤網路控制:HJIE式強化深度學習方法
論文名稱(外文):Robust Decentralized H∞ Attack-Tolerant Observer-Based Team Formation Tracking Network Control for Large-Scale Quadrotor UAV System: HJIE-Reinforcement Learning-Based Deep Neural Network Method
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):李征衛
吳仁銘
洪樂文
口試委員(外文):Li, Cheng-Wei
Wu, Jen-Ming
Hong, Yao-Win
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061618
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:45
中文關鍵詞:網路控制系統攻擊容忍基於觀測器追蹤控制大規模四旋翼無人機編隊網路控制系統觀測器/控制器耦合HJIEHJIE強化學習深度神經網路H∞大規模系統的分散式參考追蹤控制
外文關鍵詞:Network control system (NCS)Attack-tolerant observer-based tracking controlTeam formation NCS of large-scale quadrotor UAVsObserver/controller-coupled HJIEHJIE-Reinforcement learning deep neural network (DNN)H∞ decentralized reference tracking control of large-scale systems
相關次數:
  • 推薦推薦:0
  • 點閱點閱:591
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文針對大規模四旋翼無人機系統在外部干擾、量測雜訊、其他相鄰四旋翼無人機的耦合以及通過無線通信對網絡控制系統(NCS)的執行器和傳感器的惡意攻擊下,提出了一種強健性分散式 H∞ 攻擊容忍基於觀測器的編隊追蹤控制方案。首先,我們建構一個攻擊信號的平滑模型來描述其行為。然後,通過將平滑模型與每個四旋翼無人機的系統狀態相結合,我們可以通過傳統的 Luenberger 觀測器同時估測攻擊信號和每個四旋翼無人機的系統狀態,從而實現大規模四旋翼無人機的高效強健性分散式 H∞ 攻擊容忍基於觀測器編隊追蹤控制。對於大規模四旋翼無人機的強健性分散式 H∞ 攻擊容忍基於觀測器編隊追蹤控制設計,必須解決一個非常困難的獨立非線性偏微分觀測器/控制器耦合的 Hamilton Jacobi Issac 方程式來進行每個四旋翼無人機的觀測器和控制器設計。現在,還沒有分析和數值方法來解決HJIE。因此,一個基於 HJIE-強化學習的深度神經網絡 (DNN)被訓練來直接解決觀測器/控制器耦合的 HJIE,用於每個四旋翼無人機的強健性分散式H∞攻擊容忍基於觀測器的編隊追蹤控制。由於四旋翼無人機的系統模型和 HJIE 已經被用於 HJIE-強化亞當學習算法的 DNN 訓練,與傳統的 DNN 大數據驅動訓練相比,我們節省了大量的訓練數據和時間,實現了強健的分散式 H∞ 攻擊容忍基於觀測器編隊追蹤控制設計。隨著亞當演算法的收斂,我們可以證明所提出的基於 HJIE-強化 DNN 的分散式 H∞ 攻擊容忍基於觀測器的控制方案可以實現理論上的結果。最後,通過模擬結果驗證所提方法的有效性。
In this paper, a robust decentralized H∞ attack-tolerant observer-based team formation tracking control scheme is proposed for large-scale quadrotor unmanned aerial vehicle (UAV) systems under external disturbance, measure noise, couplings from other neighboring quadrotor UAVs, and malicious attacks on actuator and sensor of network control system (NCS) via wireless communication. At first, we constructed a smoothed model of attack signals to describe their behavior. Then, by integrating the smoothed model with the system state of each quadrotor UAV, we can simultaneously estimate the attack signals and the system state of each quadrotor UAV through a traditional Luenberger observer for the efficient robust decentralized H∞ attack-tolerant observer-based team formation tracking control of large-scale quadrotor UAVs.
For the design of robust decentralized H∞ attack-tolerant observer-based team formation tracking control of large-scale quadrotor UAVs, a very difficult independent nonlinear partial differential observer/controller-coupled Hamilton Jacobi Issac equation must be solved for the observer and controller design of each quadrotor UAV. Nowadays, there are no analytical and numerical methods to resolve HJIE. Thus, an HJIE-reinforcement learning-based deep neural network (DNN) is trained to directly solve the observer/controller-coupled HJIE for robust decentralized H∞ attack-tolerant observer-based team formation tracking control of each quadrotor UAV. Since the system model of the quadrotor UAV and HJIE have been adopted for the HJIE-reinforcement Adam learning algorithm DNN training, compared to traditional DNN big data-driven training, we save a lot of training data and time to achieve the robust decentralized H∞ attack-tolerant observer-based team formation tracking control design. As the Adam algorithm converges, we could show that the proposed HJIE-reinforcement DNN-based decentralized H∞ attack-tolerant observer-based tracking control scheme can achieve the theoretical result. Finally, the simulation results are presented with a comparison to verify the effectiveness of the proposed method.
摘要..................................................................I
Abstract............................................................II
致謝................................................................III
Content.............................................................IV
I. Introduction......................................................1
II. System Description and Preliminaries.............................6
III. Decentralized H∞ Attack-Tolerant Observer-Based Team Formation Tracking Control of Large-Scale Quadrotor UAV NCS...................15
IV. HJIE-reinforcement DNN-Based Decentralized H∞ Attack-tolerant
Observer-based Team Formation Tracking Control Design of Large-scale
Quadrotor UAV NCS...................................................18
V. Simulation Results...............................................26
VI. Conclusion......................................................34
VII. Appendix.......................................................35
References..........................................................43
[1] M. Zhu, X. Du, X. Zhang, H. Luo, and G. Wang, “Muti-quadrotor UAV rapid-assessment task-assignment problem in a post-earthquake scenario,” IEEE Access, vol. 7, pp. 74542-74557, Jun. 2019.

[2] N. H. Motlagh, M. Bagaa, and T. Taleb, “quadrotor UAV-Based IoT Platform: A Crowd Surveillance Use Case,” IEEE Communications Magazine, vol. 55, no. 2, pp. 128-134, February 2017.

[3] K. Dorling, J. Heinrichs, G. G. Messier and S. Magierowski, “Vehicle Routing Problems for Drone Delivery,” IEEE Trans. on Syst., Man, and Cybern. Syst., vol. 47, no. 1, pp. 70-85, Jan. 2017.

[4] F. Liao, R. Teo, J. L. Wang, X. Dong, F. Lin, and K. Peng “Distributed formation and reconfiguration control of VTOL quadrotor UAVs,” IEEE Trans. on Control Systems Technology, vol. 25, no. 1, pp. 270-277, Jan. 2017.

[5] P. Ogren, M. Egerstedt, and X. Hu, “A control Lyapunov function approach to multiagent coordination,” IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 847–851, Oct. 2002.

[6] B.-S. Chen, C.-P. Wang, and M.-Y. Lee, “Stochastic robust team tracking control of multi-quadrotor UAV networked system under Wiener and Poisson random fluctuations,” IEEE Trans. Cybern., vol. 51, no. 12, pp. 5786-5799, Dec. 2021.

[7] J. R. T. Lawton, R. W. Beard, and B. J. Young, “A decentralized approach to formation maneuvers, ” IEEE Trans. Robot. Autom., vol. 19, no. 6, pp. 933–941, Dec. 2003.

[8] M.-Y. Lee, B.-S. Chen, Y. Chang, and C.-L. Hwang, “Stochastic robust team formation tracking design of multi-VTOL-
quadrotor UAV networked control system in smart city under time-varying delay and random fluctuation,” IEEE Access,vol. 8, pp. 131310–131326, 2020.

[9] M. -Y. Lee, B. -S. Chen, C. -Y. Tsai and C. -L. Hwang, “Stochastic H∞ Robust Decentralized Tracking Control of Large-
Scale Team Formation quadrotor UAV Network System With Time-Varying Delay and Packet Dropout Under Interconnected Couplings and Wiener Fluctuations,”IEEE Access, vol. 9, pp. 41976-41997, 2021, doi: 10.1109/ACCESS.2021.3065127.

[10] L. Chettri and R. Bera, “A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16–32, Jan. 2020.

[11] W. C. Cheng, X. Zhang, and H. L. Zhang, “Statistical-QoS driven energy-efficiency optimization over green 5G mobile wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp 3092–3107, Dec. 2016.

[12] Y. Shi, and B. Yu, “Output feedback stabilization of networked control systems with random delays modeled by Markov chains,” IEEE Trans. on Automatic Control, vol. 54, no. 7, pp. 1668-1674, Jul. 2009.

[13] G. P. Liu, Y. Xia, D. Rees, and W. Hu, “Design and stability criteria of networked predictive control systems with random network delay in the feedback channel,” IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 2, pp. 173-184, Mar. 2007.

[14] H. Gao, and T. Chen, “Network-based H∞ output tracking control,” IEEE Trans. on Automatic Control, vol. 53, no. 3,
pp. 655-667, Apr. 2008.

[15] B. Xue, S. Li, and Q. Zhu, “Moving horizon state estimation for networked control systems with multiple packet dropouts,”
IEEE Trans. on Automatic Control, vol. 57, no. 9, pp. 2360-2366, Sep. 2012.

[16] R. Lu, Y. Xu, and R. Zhang, “A new design of nodel predictive tracking control for networked control system under
random packet loss and uncertainties,” IEEE Trans. on Industrial Electronics, vol. 63, no. 11, pp. 6999-7007, Nov. 2016.

[17] B. Genge, P. Haller, and I. Kiss, “Cyber-security-aware network design of industrial control systems,” IEEE Systems
Journal, vol. 11, no. 3, pp. 1373-1384, Sep. 2017.

[18] H. Zhang, P. Cheng, L. Shi, and J. Chen, “Optimal DoS attack scheduling in wireless networked control system,” IEEE
Trans. on Control Systems Technology, vol. 24, no. 3, pp. 843-852, May 2016.

[19] N. Liu, J. Zhang, H. Zhang, and W. Liu, “Security assessment for communication networks of power control systems
using attack graph and MCDM,” IEEE Trans. on Power Delivery, vol. 25, no. 3, pp. 1492-1500, Jul. 2010.

[20] A.Shui, W.Chen, P. Zhang, S.Hu, and X.Huang, “Review of fault diagnosis in control systems,” Pro. Chin. Control Decis.
Conf, Guilin, China, 2009, pp. 5324-5329.

[21] S. Harshavarthini, R. Sakthivel, and C. K. Ahn, “Finite-time reliable attitude tracking control design for nonlinear quadrotor
model with actuator faults,” Nonlinear Dyn., vol. 96, no.4, pp.2681-2692, Jun. 2019.

[22] H. Yang, and S. Yin, “Descriptor observers design for Markov jump systems with simultaneous sensor and actuator faults,”
IEEE Trans. on Automatic Control, vol. 64, no. 8, pp. 3370-3377, Aug. 2019.

[23] Q. Jia, W. Chen, Y. Zhang, and H. Li, “Fault reconstruction and fault-tolerant control via learning observers in Takagi–
Sugeno fuzzy descriptor systems with time delays,” IEEE Trans. on Industrial Electronics, vol. 62, no. 6, pp. 3885-3895,
Jun. 2015.

[24] Z. Gao, and S. X. Ding, “Fault estimation and fault-tolerant control for descriptor systems via proportional, multiple-integral
and derivative observer design,” IET Control Theory & Applications, vol. 1, no. 5, pp. 1208-1218, Sep. 2007.

[25] T. Basar and P. Bernhard, “H∞ optimal control and related minmax design problems: A dynamic game approach,”
Birkhauser Boston, Boston, MA, ̈ 1995.

[26] J. W. Helton and M. R. James, “Extending H∞ control to nonlinear systems,” SIAM: Philadelphia, 1999.

[27] J. Yong and X. Y. Zhou, “Stochastic control: Hamiltonian systems and HJB equation,” New York: Springer, 1999.

[28] W. Zhang, L. Xie and B. S. Chen, “Stochastic H2/H∞ control: A nash game approach,” CRC Press, 2017.

[29] B. -S. Chen, M. -Y. Lee and X. -H. Chen, “Security-Enhanced Filter Design for Stochastic Systems under Malicious Attack
via Smoothed Signal Model and Multiobjective Estimation Method,” IEEE Transactions on Signal Processing, vol. 68, pp.4971-4986, 2020.

[30] H. Gao, J. Lam, L. Xie and C. Wang, “New approach to mixed H2/H∞ filtering for polytopic discrete-time systems,”
IEEE Trans. on Signal Processing, vol. 53, no. 8, pp. 3183-3192, Aug. 2005.

[31] X. L. Lin, C. F. Wu and B. S. Chen, “Robust H∞ Adaptive Fuzzy Tracking Control for MIMO Nonlinear Stochastic Poisson Jump Diffusion Systems,” IEEE Trans. on Cybernetics, vol. 49, no. 8, pp. 3116-3130, Aug.2019.

[32] B. -S. Chen, M. -Y. Lee and T. -H. Lin, “DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems With External Disturbance and its Application to UAV Tracking Design,” IEEE Access,vol. 9, pp. 69635-69653, 2021.

[33] B. -S. Chen and P. -H. Wu, “Robust H∞ Observer-Based Reference Tracking Control Design of Nonlinear Stochastic Systems: HJIE-Embedded Deep Learning Approach,” IEEE Access, vol. 10, pp. 39889-39911, 2022.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR, San Diego, pp. 1-15, arXiv preprint arXir:
1412.6980, Dec. 2014.

[35] S. X. Du, A. Dekka, and B. Wu, “Modular Multilevel Converters: Analysis, Control, and Applications.” Hoboken, NJ, USA: Wiley-IEEE Press, Jan. 2018.

[36] Y. N. Dauphin, H. D. Vries, J. Chung, and Y. Bengio, “RMSProp and equilibrated adaptive learning rates for non-convex optimization,” Machine Learning, arXiv preprint arXiv:1502.04390, Feb. 2015.

[37] A. H. Khan, X. Cao, S. Li, V. N. Katsikis and L. Liao, “BAS-ADAM: an ADAM based approach to improve the performance of beetle antennae search optimizer,” IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 2, pp. 461-471, March 2020.

[38] C.S Tseng and B.S Chen, “H∞ decentralized fuzzy model reference tracking control design for nonlinear interconnected
systems,”IEEE Transactions on Fuzzy Systems, vol. 9, no. 6, pp. 795-809, Dec. 2001.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *