|
[1] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep representation for volumetric shapes,” in CVPR, pp. 1912–1920, 2015. iv, 5, 18, 19 [2] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, C. Lu, Q. Huang, A. Sheffer, and L. J. Guibas, “A scalable active framework for region annotation in 3d shape collections,” ACM Trans. Graph., pp. 210:1–210:12, 2016. iv, 18, 19 [3] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d classification and segmentation,” in CVPR, pp. 77–85, 2017. 1, 5 [4] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on point sets in a metric space,” in NeurIPS, pp. 5099–5108, 2017. 1, 5 [5] W. Wu, Z. Qi, and F. Li, “Pointconv: Deep convolutional networks on 3d point clouds,” in CVPR, pp. 9621–9630, 2019. 1, 5 [6] X. Yan, C. Zheng, Z. Li, S. Wang, and S. Cui, “Pointasnl: Robust point clouds processing using nonlocal neural networks with adaptive sampling,” in CVPR, pp. 5588–5597, 2020. 1, 5 [7] H.Thomas,C.R.Qi,J.Deschaud,B.Marcotegui,F.Goulette,andL.J.Guibas,“Kpconv: Flexible and deformable convolution for point clouds,” in ICCV, pp. 6410–6419, 2019. 1, 5 [8] C. B. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets: Minkowski convo- lutional neural networks,” in CVPR, pp. 3075–3084, 2019. 1, 5 [9] B. Graham, M. Engelcke, and L. van der Maaten, “3d semantic segmentation with sub- manifold sparse convolutional networks,” in CVPR, pp. 9224–9232, 2018. 1, 3, 5, 14, 17 [10] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in CVPR, pp. 248–255, 2009. 1 [11] T.Chen,S.Kornblith,M.Norouzi,andG.E.Hinton,“Asimpleframeworkforcontrastive learning of visual representations,” in ICML, pp. 1597–1607, 2020. 1 [12] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Unsupervised learning of visual features by contrasting cluster assignments,” in NeurIPS, 2020. 1 [13] K. He, H. Fan, Y. Wu, S. Xie, and R. B. Girshick, “Momentum contrast for unsupervised visual representation learning,” in CVPR, pp. 9726–9735, 2020. 1 25 [14] X. Chen and K. He, “Exploring simple siamese representation learning,” in CVPR, pp. 15750–15758, 2021. 1 [15] J.Grill,F.Strub,F.Altché,C.Tallec,P.H.Richemond,E.Buchatskaya,C.Doersch,B.Á. Pires, Z. Guo, M. G. Azar, B. Piot, K. Kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent - A new approach to self-supervised learning,” in NeurIPS, 2020. 1 [16] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. B. Girshick, “Masked autoencoders are scalable vision learners,” arXiv preprint arXiv:2111.06377, 2021. 1 [17] S. Xie, J. Gu, D. Guo, C. R. Qi, L. J. Guibas, and O. Litany, “Pointcontrast: Unsupervised pre-training for 3d point cloud understanding,” in ECCV, pp. 574–591, 2020. 1, 3, 6, 16 [18] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A. Funkhouser, and M. Nießner, “Scannet: Richly-annotated 3d reconstructions of indoor scenes,” in CVPR, pp. 2432–2443, 2017. 1, 3, 15 [19] Z. Liu, X. Qi, and C. Fu, “One thing one click: A self-training approach for weakly super- vised 3d semantic segmentation,” in CVPR, pp. 1726–1736, 2021. 3, 6, 15, 16 [20] J.Hou,B.Graham,M.Nießner,andS.Xie,“Exploringdata-efficient3dsceneunderstand- ing with contrastive scene contexts,” in CVPR, pp. 15587–15597, 2021. 3, 6, 16 [21] P.Wang,Y.Liu,Y.Guo,C.Sun,andX.Tong,“O-CNN:octree-basedconvolutionalneural networks for 3d shape analysis,” ACM Trans. Graph., pp. 72:1–72:11, 2017. 3, 5, 14, 17, 19 [22] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution on x- transformed points,” in NeurIPS (S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), pp. 828–838, 2018. 5 [23] A. Boulch, “Convpoint: Continuous convolutions for point cloud processing,” Comput. Graph., pp. 24–34, 2020. 5 [24] D. Maturana and S. A. Scherer, “Voxnet: A 3d convolutional neural network for real-time object recognition,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2015, Hamburg, Germany, September 28 - October 2, 2015, pp. 922–928, 2015. 5 [25] B. Graham, “Sparse 3d convolutional neural networks,” in BMVC (X. Xie, M. W. Jones, and G. K. L. Tam, eds.), pp. 150.1–150.9, 2015. 5 [26] G. Riegler, A. O. Ulusoy, and A. Geiger, “Octnet: Learning deep 3d representations at high resolutions,” in CVPR, pp. 6620–6629, 2017. 5 [27] L. Luo, B. Tian, H. Zhao, and G. Zhou, “Pointly-supervised 3d scene parsing with view- point bottleneck,” arXiv preprint arXiv:2109.08553, 2021. 6, 16 [28] Z. Zhang, R. Girdhar, A. Joulin, and I. Misra, “Self-supervised pretraining of 3d features on any point-cloud,” in ICCV, 2021. 6 [29] Y.-C. Liu, Y.-K. Huang, H.-Y. Chiang, H.-T. Su, Z.-Y. Liu, C.-T. Chen, C.-Y. Tseng, and W. H. Hsu, “Learning from 2d: Contrastive pixel-to-point knowledge transfer for 3d pre- training,” arXiv preprint arXiv:2104.04687, 2021. 6 26
[30] B.Zhou,H.Zhao,X.Puig,S.Fidler,A.Barriuso,andA.Torralba,“Sceneparsingthrough ADE20K dataset,” in CVPR, pp. 5122–5130, 2017. 10, 14 [31] H. Caesar, J. R. R. Uijlings, and V. Ferrari, “Coco-stuff: Thing and stuff classes in con- text,” in CVPR, pp. 1209–1218, 2018. 10 [32] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in CVPR, pp. 6230–6239, 2017. 10 [33] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Trans. Pattern Anal. Mach. Intell., pp. 834–848, 2018. 10 [34] Z. Zhu, M. Xu, S. Bai, T. Huang, and X. Bai, “Asymmetric non-local neural networks for semantic segmentation,” in ICCV, pp. 593–602, 2019. 10 [35] Y.Yuan,X.Chen,andJ.Wang,“Object-contextualrepresentationsforsemanticsegmenta- tion,” in ECCV (A. Vedaldi, H. Bischof, T. Brox, and J. Frahm, eds.), pp. 173–190, 2020. 10 [36] C. Hsiao, C. Sun, H. Chen, and M. Sun, “Specialize and fuse: Pyramidal output represen- tation for semantic segmentation,” in ICCV, 2021. 10 [37] R. Ranftl, A. Bochkovskiy, and V. Koltun, “Vision transformers for dense prediction,” in ICCV, pp. 12179–12188, 2021. 10, 14 [38] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv preprint arXiv:1503.02531, 2015. 10 [39] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” in NeurIPS, pp. 281–296, 2005. 11 [40] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” in ICLR, 2017. 11 [41] S. Song, S. P. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D scene understanding benchmark suite,” in CVPR, pp. 567–576, 2015. 13, 20 [42] A. X. Chang, A. Dai, T. A. Funkhouser, M. Halber, M. Nießner, M. Savva, S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learning from RGB-D data in indoor environ- ments,” in 3DV, pp. 667–676, 2017. 13 [43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd Interna- tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015. 14 [44] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in MICCAI, pp. 234–241, 2015. 17 [45] Y.Zhao,T.Birdal,H.Deng,andF.Tombari,“3dpointcapsulenetworks,”inIEEEConfer- ence on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 1009–1018, Computer Vision Foundation / IEEE, 2019. 19 27
[46] K. Hassani and M. Haley, “Unsupervised multi-task feature learning on point clouds,” in 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 8159–8170, IEEE, 2019. 19 [47] P.Wang,Y.Yang,Q.Zou,Z.Wu,Y.Liu,andX.Tong,“Unsupervised3dlearningforshape analysis via multiresolution instance discrimination,” in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 2773–2781, AAAI Press, 2021. 19 |