帳號:guest(3.145.88.20)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇柏瑋
作者(外文):Su, Po-Wei
論文名稱(中文):肌肉浸潤性膀胱癌和晚期膀胱癌通過全基因組微陣列數據及具有藥物設計規格的深度學習方法進行系統藥物設計
論文名稱(外文):Systems Drug Design for Muscle Invasive Bladder Cancer and Advanced Bladder Cancer by Genome-wide Microarray Data and Deep Learning Method with Drug Design Specifications
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):吳謂勝
王禹超
李征衛
口試委員(外文):Wu, Wei-Sheng
Wang, Yu-Chao
Li, Cheng-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061607
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:58
中文關鍵詞:肌肉浸潤性膀胱癌晚期膀胱癌基於深度神經網絡的藥物-靶點相互作用模型藥物靶點藥物設計規格藥物組合
外文關鍵詞:muscle-invasive bladder cancer (MIBC)advanced bladder cancer (ABC)deep neural network (DNN)-based drug-target interaction (DTI) modeldrug targetsdrug design specificationsdrug combination
相關次數:
  • 推薦推薦:0
  • 點閱點閱:286
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
膀胱癌是全球第10名最常見的癌症。由於對肌肉浸潤性膀胱癌(MIBC)和晚期膀胱癌(ABC)之間的致癌機制缺乏了解以及當前治療的局限性,迫切需要新的治療方法。在這項研究中,我們利用系統生物學方法通過全基因組微陣列數據探索MIBC和ABC的致癌機制,以辨別各自的藥物靶點進行系統藥物發現。首先,我們通過大數據挖掘構建候選全基因組遺傳和表觀遺傳網絡(GWGEN)。其次,我們通過它們的全基因組微陣列數據應用系統識別和系統順序檢測方法刪除候選GWGEN中的誤報,以獲得MIBC和ABC的真實GWGEN。第三,我們通過主網絡投影(PNP)方法選擇重要的蛋白質、基因和表觀遺傳,從真實的GWGEN中提取核心的GWGEN。最後,我們通過京都基因與基因組百科全書(KEGG)路徑的註釋從相應的核心GWGEN中獲得核心信號路徑,以研究MIBC和ABC的致癌機制。基於致癌機制,我們選擇MIBC的重要藥物靶點NFKB1、LEF1和MYC,以及ABC的LEF1、MYC、NOTCH1和FOXO1。為了設計MIBC和ABC的分子藥物組合,我們採用基於深度神經網絡(DNN)的藥物-靶點相互作用(DTI)模型和藥物規格。基於DNN的DTI模型由藥物-靶點相互作用數據庫訓練,分別預測MIBC和ABC的候選藥物。隨後,基於調節能力、敏感性和毒性的藥物設計規格作為篩選標準,從候選藥物中篩選出用於 MIBC的Embelin和Obatoclax以及用於ABC的Obatoclax、Entinostat和Imiquimod的潛在藥物組合。總而言之,我們不僅研究MIBC和ABC的致癌機制,而且分別為MIBC和ABC提供有希望的治療選擇。
Bladder cancer is the 10th most common cancer worldwide. Due to the lack of understanding of the oncogenic mechanisms between muscle-invasive bladder cancer (MIBC) and advanced bladder cancer (ABC) and the limitations of current treatments, novel therapeutic approaches are urgently needed. In this study, we utilized the systems biology method via genome-wide microarray data for exploring the oncogenic mechanisms of MIBC and ABC to identify their respective drug targets for systems drug discovery. First, we constructed the candidate genome-wide genetic and epigenetic network (GWGEN) through big data mining. Second, we applied the system identification and system order detection method to delete false positives in candidate GWGEN to obtain the real GWGENs of MIBC and ABC by their genome-wide microarray data. Third, we extracted the core GWGENs from the real GWGENs by selecting the significant proteins, genes and epigenetics via the principal network projection (PNP) method. Finally, we obtained the core signaling pathways from the corresponding core GWGEN through the annotations of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway to investigate the carcinogenic mechanisms of MIBC and ABC. Based on the carcinogenic mechanisms, we selected the significant drug targets NFKB1, LEF1 and MYC for MIBC, and LEF1, MYC, NOTCH1 and FOXO1 for ABC. To design molecular drug combinations for MIBC and ABC, we employed the deep neural network (DNN)-based drug-target interaction (DTI) model with drug specifications. The DNN-based DTI model was trained by drug-target interaction databases to predict the candidate drugs for MIBC and ABC, respectively. Subsequently, the drug design specifications based on regulation ability, sensitivity and toxicity were employed as filter criteria for screening the potential drug combination of Embelin and Obatoclax for MIBC, and Obatoclax, Entinostat and Imiquimod for ABC from their candidate drugs. In conclusion, we not only investigate the oncogenic mechanisms of MIBC and ABC but also provide promising therapeutic options for MIBC and ABC, respectively.
致謝----I
摘要----II
Abstract----III
Contents----V
Chapter 1 Introduction----1
Chapter 2 Methods and Materials----5
2.1 Overview of Systems Biology Methods and Systematic Drug Discovery and Design for MIBC and ABC----5
2.2 Data Preprocessing, Big Data Mining and the Construction of Candidate GWGEN----9
2.3 Systems Modeling for the Candidate GWGEN of MIBC and ABC----10
2.4 The System Identification Scheme and System Order Detection Method for Real GWGENs of MIBC and ABC----12
2.5 The Principal Network Projection (PNP) Method for Extracting the Core GWGENs from the Real GWGENs----18
2.6 Systematic Discovery and Design of Drug Combinations as Multiple-molecule Drugs for MIBC and ABC via Deep Neural Network----21
Chapter 3 Results----27
3.1 Overview of Systems Biology Approach for the Investigation of Carcinogenic Mechanism and Systematic Drug Design for the Treatment of MIBC and ABC----27
3.2 The Deep Neural Network-based Drug-Target Interaction Model with Drug Design Specifications to Discover the Potential Drug Combinations for Multiple-molecule Drugs of MIBC and ABC----34
Chapter 4 Discussion----42
4.1 The Specific Molecular Carcinogenic Mechanisms and the Investigation of the Drug Targets for MIBC----42
4.2 The Common Molecular Mechanisms and the Investigation of the Drug Targets between MIBC and ABC----43
4.3 The Specific Molecular Carcinogenic Mechanisms and the Investigation of the Drug Targets for ABC----45
4.4 The Potential Drug Combinations for the Drug Targets of MIBC and ABC----46
Chapter 5 Conclusion----48
Reference----50
1. Sung, H., et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 2021. 71(3): p. 209-249.
2. Patel, V.G., W.K. Oh, and M.D. Galsky, Treatment of muscle‐invasive and advanced bladder cancer in 2020. CA: a cancer journal for clinicians, 2020. 70(5): p. 404-423.
3. Kaufman, D.S., W.U. Shipley, and A.S. Feldman, Bladder cancer. The Lancet, 2009. 374(9685): p. 239-249.
4. Sanli, O., et al., Bladder cancer. Nature reviews Disease primers, 2017. 3(1): p. 1-19.
5. Kamat, A.M., et al., Bladder cancer. The Lancet, 2016. 388(10061): p. 2796-2810.
6. Edge, S.B. and C.C. Compton, The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Annals of surgical oncology, 2010. 17(6): p. 1471-1474.
7. Motterle, G., et al., Predicting response to neoadjuvant chemotherapy in bladder cancer. European urology focus, 2020. 6(4): p. 642-649.
8. Bellmunt, J. and D.P. Petrylak. New therapeutic challenges in advanced bladder cancer. in Seminars in oncology. 2012. Elsevier.
9. Chang, J.S., P.N. Lara, and C.-X. Pan, Progress in personalizing chemotherapy for bladder cancer. Advances in urology, 2012. 2012.
10. Robertson, A.G., et al., Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell, 2017. 171(3): p. 540-556.
11. Kung, J.T., D. Colognori, and J.T. Lee, Long noncoding RNAs: past, present, and future. Genetics, 2013. 193(3): p. 651-669.
12. Yoon, J.-H., K. Abdelmohsen, and M. Gorospe, Posttranscriptional gene regulation by long noncoding RNA. Journal of molecular biology, 2013. 425(19): p. 3723-3730.
13. Qiu, M.-T., et al., Long noncoding RNA: an emerging paradigm of cancer research. Tumor Biology, 2013. 34(2): p. 613-620.
14. Flippot, R., et al., Long non-coding RNAs in genitourinary malignancies: a whole new world. Nature Reviews Urology, 2019. 16(8): p. 484-504.
15. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. cell, 2004. 116(2): p. 281-297.
16. Croce, C.M. and G.A. Calin, miRNAs, cancer, and stem cell division. Cell, 2005. 122(1): p. 6-7.
17. Calin, G.A. and C.M. Croce, MicroRNA-cancer connection: the beginning of a new tale. Cancer research, 2006. 66(15): p. 7390-7394.
18. Zabolotneva, A.A., et al., Characteristic patterns of microRNA expression in human bladder cancer. Frontiers in genetics, 2013. 3, 310.
19. Nosengo, N., Can you teach old drugs new tricks? Nature, 2016. 534(7607): p. 314-316.
20. Kola, I. and J. Landis, Can the pharmaceutical industry reduce attrition rates? Nature reviews Drug discovery, 2004. 3(8): p. 711-716.
21. Luo, Y., et al., A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nature communications, 2017. 8(1): p. 1-13.
22. Peng, J., J. Li, and X. Shang, A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network. BMC bioinformatics, 2020. 21(13): p. 1-13.
23. Hopkins, A.L., Network pharmacology: the next paradigm in drug discovery. Nature chemical biology, 2008. 4(11): p. 682-690.
24. Sleire, L., et al., Drug repurposing in cancer. Pharmacological research, 2017. 124: p. 74-91.
25. Madani Tonekaboni, S.A., et al., Predictive approaches for drug combination discovery in cancer. Briefings in bioinformatics, 2018. 19(2): p. 263-276.
26. Yeh, S.-J., et al., Systems biology approaches to investigate genetic and epigenetic molecular progression mechanisms for identifying gene expression signatures in papillary thyroid cancer. International journal of molecular sciences, 2019. 20(10): p. 2536.
27. Challacombe, B.J., et al., The role of laparoscopic and robotic cystectomy in the management of muscle-invasive bladder cancer with special emphasis on cancer control and complications. European urology, 2011. 60(4): p. 767-775.
28. Hermjakob, H., et al., IntAct: an open source molecular interaction database. Nucleic acids research, 2004. 32(suppl_1): p. D452-D455.
29. Xenarios, I., et al., DIP: the database of interacting proteins. Nucleic acids research, 2000. 28(1): p. 289-291.
30. Licata, L., et al., MINT, the molecular interaction database: 2012 update. Nucleic acids research, 2012. 40(D1): p. D857-D861.
31. Bader, G.D., et al., BIND—the biomolecular interaction network database. Nucleic acids research, 2001. 29(1): p. 242-245.
32. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic acids research, 2006. 34(suppl_1): p. D535-D539.
33. Friard, O., et al., CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC bioinformatics, 2010. 11(1): p. 1-10.
34. Li, J.-H., et al., starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic acids research, 2014. 42(D1): p. D92-D97.
35. Min, H. and S. Yoon, Got target?: computational methods for microRNA target prediction and their extension. Experimental & molecular medicine, 2010. 42(4): p. 233-244.
36. Wingender, E., et al., TRANSFAC: an integrated system for gene expression regulation. Nucleic acids research, 2000. 28(1): p. 316-319.
37. Zheng, G., et al., ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008. 24(20): p. 2416-2417.
38. Bovolenta, L.A., M.L. Acencio, and N. Lemke, HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. BMC genomics, 2012. 13(1): p. 1-10.
39. Chen, B.-S. and C.-C. Wu, Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells, 2013. 2(4): p. 635-688.
40. Kuhn, M., et al., STITCH: interaction networks of chemicals and proteins. Nucleic acids research, 2007. 36(suppl_1): p. D684-D688.
41. Chen, Y.Z., Bioinformatics and Drug Design Group at NUS. Asia-Pacific Biotech News, 2006. 10(24): p. 1478-1479.
42. Consortium, U., UniProt: a worldwide hub of protein knowledge. Nucleic acids research, 2019. 47(D1): p. D506-D515.
43. Knox, C., et al., DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic acids research, 2010. 39(suppl_1): p. D1035-D1041.
44. Gaulton, A., et al., ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic acids research, 2012. 40(D1): p. D1100-D1107.
45. Kim, S., et al., PubChem substance and compound databases. Nucleic acids research, 2016. 44(D1): p. D1202-D1213.
46. Kanehisa, M. and S. Goto, KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 2000. 28(1): p. 27-30.
47. Dong, J., et al., PyBioMed: a python library for various molecular representations of chemicals, proteins and DNAs and their interactions. Journal of cheminformatics, 2018. 10(1): p. 1-11.
48. Shlens, J., A tutorial on principal component analysis. 2005. Institute for Nonlinear Science, UCSD, 2010.
49. Hecht-Nielsen, R., Theory of the backpropagation neural network, in Neural networks for perception. 1992, Elsevier. p. 65-93.
50. Bradley, A.P., The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 1997. 30(7): p. 1145-1159.
51. Subramanian, A., et al., A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell, 2017. 171(6): p. 1437-1452. e17.
52. Corsello, S.M., et al., Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nature cancer, 2020. 1(2): p. 235-248.
53. Xiong, G., et al., ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 2021. 49(W1): p. W5-W14.
54. Seçilmiş, D., et al., Uncovering cancer gene regulation by accurate regulatory network inference from uninformative data. NPJ systems biology and applications, 2020. 6(1): p. 1-8.
55. Li, X., et al., Combination of quercetin and cisplatin enhances apoptosis in OSCC cells by downregulating xIAP through the NF-κB pathway. Journal of cancer, 2019. 10(19): p. 4509.
56. Xiao, J., et al., LINC00467 Promotes Tumor Progression via Regulation of the NF-kb Signal Axis in Bladder Cancer. Frontiers in Oncology, 2021. 11: p. 1958.
57. Mukherjee, N., et al., To be an ally or an adversary in bladder cancer: the NF-κB story has not unfolded. Carcinogenesis, 2015. 36(3): p. 299-306.
58. Notarbartolo, M., et al., Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer letters, 2005. 224(1): p. 53-65.
59. Crawford, A. and R. Nahta, Targeting Bcl-2 in herceptin-resistant breast cancer cell lines. Current Pharmacogenomics and Personalized Medicine (Formerly Current Pharmacogenomics), 2011. 9(3): p. 184-190.
60. Rius, J., et al., NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature, 2008. 453(7196): p. 807-811.
61. Xu, J., et al., XIAP Interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion. Oncogenesis, 2019. 8(12): p. 1-9.
62. Schimmer, A., et al., Targeting XIAP for the treatment of malignancy. Cell Death & Differentiation, 2006. 13(2): p. 179-188.
63. Ruvolo, P., X. Deng, and W. May, Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia, 2001. 15(4): p. 515-522.
64. Lin, C., et al., Hypoxia induces HIF‐1α and VEGF expression in chondrosarcoma cells and chondrocytes. Journal of Orthopaedic Research, 2004. 22(6): p. 1175-1181.
65. Zeng, F.-C., et al., Downregulation of VEGFA inhibits proliferation, promotes apoptosis, and suppresses migration and invasion of renal clear cell carcinoma. OncoTargets and therapy, 2016. 9: p. 2131.
66. Gao, X., et al., Identification of key candidate genes and biological pathways in bladder cancer. PeerJ, 2018. 6: p. e6036.
67. Chiang, Y., et al., Nuclear factor-κB overexpression is correlated with poor outcomes after multimodality bladder-preserving therapy in patients with muscle-invasive bladder cancer. Journal of clinical medicine, 2019. 8(11): p. 1954.
68. Kompier, L.C., et al., FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PloS one, 2010. 5(11): p. e13821.
69. Sun, X.-F., et al., Alteration in methylation pattern of oncogene Akt1 promoter region in bladder cancer. Molecular biology reports, 2012. 39(5): p. 5631-5636.
70. Graff, J.R., et al., eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer research, 2009. 69(9): p. 3866-3873.
71. Byrnes, K., et al., High eIF4E, VEGF, and microvessel density in stage I to III breast cancer. Annals of surgery, 2006. 243(5): p. 684.
72. Bretones, G., M.D. Delgado, and J. León, Myc and cell cycle control. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2015. 1849(5): p. 506-516.
73. Proestling, K., et al., Enhanced epithelial to mesenchymal transition (EMT) and upregulated MYC in ectopic lesions contribute independently to endometriosis. Reproductive Biology and Endocrinology, 2015. 13(1): p. 1-11.
74. Cho, K.B., et al., Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells. Cancer letters, 2010. 293(2): p. 230-239.
75. Xin, C., et al., miR-671-5p inhibits tumor proliferation by blocking cell cycle in osteosarcoma. DNA and cell biology, 2019. 38(9): p. 996-1004.
76. Yang, Y., et al., FGFR1 regulates proliferation and metastasis by targeting CCND1 in FGFR1 amplified lung cancer. Cell Adhesion & Migration, 2020. 14(1): p. 82-95.
77. Lei, Y., et al., MicroRNAs target the Wnt/β‑catenin signaling pathway to regulate epithelial‑mesenchymal transition in cancer. Oncology Reports, 2020. 44(4): p. 1299-1313.
78. Seiler, R., et al., CCND1/CyclinD1 status in metastasizing bladder cancer: a prognosticator and predictor of chemotherapeutic response. Modern pathology, 2014. 27(1): p. 87-95.
79. Moon, R.T., et al., WNT and β-catenin signalling: diseases and therapies. Nature Reviews Genetics, 2004. 5(9): p. 691-701.
80. Farago, M., et al., Kinase-inactive glycogen synthase kinase 3β promotes Wnt signaling and mammary tumorigenesis. Cancer research, 2005. 65(13): p. 5792-5801.
81. Lieven, O., J. Knobloch, and U. Rüther, The regulation of Dkk1 expression during embryonic development. Developmental biology, 2010. 340(2): p. 256-268.
82. Zhu, G., et al., Expression and role of Dickkopf-1 (Dkk1) in tumors: from the cells to the patients. Cancer Management and Research, 2021. 13: p. 659.
83. Shen, C.-H., et al., High Dickkopf-1 expression is associated with poor prognosis in patients with advanced urothelial carcinoma. ExpErimEntal and thErapEutic mEdicinE, 2010. 1(5): p. 893-898.
84. Oxford, G. and D. Theodorescu, The role of Ras superfamily proteins in bladder cancer progression. The Journal of urology, 2003. 170(5): p. 1987-1993.
85. Sun, X.-F., et al., Methylation pattern of oncogene HRAS gene promoter region and its clinical relevance to urocystic tumorigenesis. Molecular biology reports, 2012. 39(8): p. 8431-8437.
86. Raught, B. and A.-C. Gingras, eIF4E activity is regulated at multiple levels. The international journal of biochemistry & cell biology, 1999. 31(1): p. 43-57.
87. Philipp, A., et al., Repression of cyclin D1: a novel function of MYC. Molecular and Cellular Biology, 1994. 14(6): p. 4032-4043.
88. Pérez-Roger, I., et al., Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27Kip1 binding to newly formed complexes. Oncogene, 1997. 14(20): p. 2373-2381.
89. Wang, Z., et al., Suppression of p21 by c-Myc through members of miR-17 family at the post-transcriptional level. International journal of oncology, 2010. 37(5): p. 1315-1321.
90. Pattison, J.M., V. Posternak, and M.D. Cole, Transcription factor KLF5 binds a cyclin E1 polymorphic intronic enhancer to confer increased bladder cancer risk. Molecular Cancer Research, 2016. 14(11): p. 1078-1086.
91. Gialeli, C., A.D. Theocharis, and N.K. Karamanos, Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. The FEBS journal, 2011. 278(1): p. 16-27.
92. Shin, S.-S., et al., MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling, cell cycle regulators, and Ets-1-mediated MMP-2 expression. Oncology reports, 2016. 36(4): p. 2421-2429.
93. Xie, Q., et al., LSD1 promotes bladder cancer progression by upregulating LEF1 and enhancing EMT. Frontiers in oncology, 2020: p. 1234.
94. Schmitz-Dräger, B., et al., c-myc in bladder cancer Clinical findings and analysis of mechanism. Urological research, 1997. 25(1): p. S45-S49.
95. Maraver, A., et al., NOTCH pathway inactivation promotes bladder cancer progression. The Journal of clinical investigation, 2015. 125(2): p. 824-830.
96. Peng, Z., et al., Inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery in spinal cord injury through suppressing the activation of Ras homolog family member A. Journal of Neurochemistry, 2019. 150(6): p. 709-722.
97. Nowell, C. and F. Radtke, Cutaneous Notch signaling in health and disease. Cold Spring Harbor perspectives in medicine, 2013. 3(12): p. a017772.
98. Yang, K., et al., Up-regulation of p21WAF1/Cip1 by saRNA induces G1-phase arrest and apoptosis in T24 human bladder cancer cells. Cancer letters, 2008. 265(2): p. 206-214.
99. Wang, C., et al., Up-regulation of p21WAF1/CIP1 by miRNAs and its implications in bladder cancer cells. FEBS letters, 2014. 588(24): p. 4654-4664.
100. Hill, S.A., S. Wilson, and A.F. Chambers, Clonal heterogeneity, experimental metastatic ability, and p21 expression in H-ras-transformed NIH 3T3 cells. JNCI: Journal of the National Cancer Institute, 1988. 80(7): p. 484-490.
101. Koga, F., et al., Negative p53/positive p21 immunostaining is a predictor of favorable response to chemotherapy in patients with locally advanced bladder cancer. Japanese journal of cancer research, 2000. 91(4): p. 416-423.
102. Jiang, S., et al., Deciphering the roles of FOXO1 in human neoplasms. International journal of cancer, 2018. 143(7): p. 1560-1568.
103. Ling, J., et al., MiR-27a-regulated FOXO1 promotes pancreatic ductal adenocarcinoma cell progression by enhancing Wnt/β-catenin signaling activity. American Journal of Translational Research, 2019. 11(5): p. 3069.
104. Jiang, G., et al., Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 AxisISO Inhibits Bladder Cancer Invasion by Inducing FOXO1. Cancer Prevention Research, 2016. 9(7): p. 567-580.
105. Kurakazu, I., et al., FOXO1 transcription factor regulates chondrogenic differentiation through transforming growth factor β1 signaling. Journal of Biological Chemistry, 2019. 294(46): p. 17555-17569.
106. Kamai, T., et al., Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clinical Cancer Research, 2003. 9(7): p. 2632-2641.
107. Sprenkeler, E.G., et al., Molecular Mechanisms of Leukocyte Migration and Its Potential Targeting—Lessons Learned From MKL1/SRF-Related Primary Immunodeficiency Diseases. Frontiers in Immunology, 2021. 12: p. 22.
108. Park, J.H., et al., Moesin (MSN) as a novel proteome-based diagnostic marker for early detection of invasive bladder urothelial carcinoma in liquid-based cytology. Cancers, 2020. 12(4): p. 1018.
109. Greife, A., et al., Canonical Notch signalling is inactive in urothelial carcinoma. BMC cancer, 2014. 14(1): p. 1-13.
110. Williamson, N.R., et al., Anticancer and immunosuppressive properties of bacterial prodiginines. 2007.
111. Or, C.-H.R., et al., Obatoclax, a pan-bcl-2 inhibitor, downregulates survivin to induce apoptosis in human colorectal carcinoma cells via suppressing WNT/β-catenin signaling. International Journal of Molecular Sciences, 2020. 21(5): p. 1773.
112. Steele, T.M., et al., Obatoclax, a BH3 mimetic, enhances cisplatin-induced apoptosis and decreases the clonogenicity of muscle invasive bladder cancer cells via mechanisms that involve the inhibition of pro-survival molecules as well as cell cycle regulators. International journal of molecular sciences, 2019. 20(6): p. 1285.
113. Dai, Y., et al., Peroxisome proliferator-activated receptor-γ contributes to the inhibitory effects of embelin on colon carcinogenesis. Cancer research, 2009. 69(11): p. 4776-4783.
114. Peng, M., et al., Embelin inhibits pancreatic cancer progression by directly inducing cancer cell apoptosis and indirectly restricting IL-6 associated inflammatory and immune suppressive cells. Cancer letters, 2014. 354(2): p. 407-416.
115. Trapani, D., et al., Entinostat for the treatment of breast cancer. Expert opinion on investigational drugs, 2017. 26(8): p. 965-971.
116. Wang, C., et al., Combination of decitabine and entinostat synergistically inhibits urothelial bladder cancer cells via activation of FoxO1. Cancers, 2020. 12(2): p. 337.
117. Merino, V.F., et al., Induction of cell cycle arrest and inflammatory genes by combined treatment with epigenetic, differentiating, and chemotherapeutic agents in triple-negative breast cancer. Breast Cancer Research, 2018. 20(1): p. 1-14.
118. Urosevic, M., et al., Disease-independent skin recruitment and activation of plasmacytoid predendritic cells following imiquimod treatment. Journal of the National Cancer Institute, 2005. 97(15): p. 1143-1153.
119. Wuest, M., R. Dummer, and M. Urosevic, Induction of the members of Notch pathway in superficial basal cell carcinomas treated with imiquimod. Archives of dermatological research, 2007. 299(10): p. 493-498.
120. Ohadian Moghadam, S. and M.R. Nowroozi, Toll‐like receptors: The role in bladder cancer development, progression and immunotherapy. Scandinavian journal of immunology, 2019. 90(6): p. e12818.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *