帳號:guest(3.17.186.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):汪承鋼
作者(外文):Wang, Cheng-Gang
論文名稱(中文):利用宿主病原體時間剖析資料及系統生物學方法和基於藥物設計規範的深度神經網路架構的藥物標靶作用模型重新定位用於阻斷SARS-CoV-2感染進程的多分子藥物
論文名稱(外文):Multiple-Molecule Drug Repositioning for Disrupting Progression of SARS-CoV-2 Infection by Utilizing Systems Biology Method through Host-Pathogen-Interactive Time-Profile Data and DNN-Based DTI Model with Drug Design Specifications
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):李征衛
莊永仁
口試委員(外文):Li, Cheng-Wei
Chuang, Yung-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061606
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:51
中文關鍵詞:嚴重急性呼吸道症候群冠狀病毒2型2019年冠狀病毒病系統生物學藥物和靶點相互作用模型多分子藥物藥物重新定位深度學習
外文關鍵詞:SARS-CoV-2COVID-19systems biologydrug-target interaction (DTI) modelmultiple-molecule drugdrug repositioningdeep learning
相關次數:
  • 推薦推薦:0
  • 點閱點閱:574
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
自 2019 年 12 月下旬報導以來,2019 年冠狀病毒病大流行已經奪走了許多人的生命。但是,仍然沒有證明對它有效的藥物。本研究通過大數據挖掘構建候選宿主-病原體交互全基因組遺傳和表觀遺傳網絡(HPI-GWGEN)。通過RNA-seq時間剖析資料,應用還原工程去除候選HPI-GWGEN中的假陽性來研究SARS-CoV-2感染的發病機制。隨後,通過主網絡投影方法和KEGG信號通路的註釋,我們確定了重要的生物標誌物作為藥物靶標,以破壞SARS-CoV-2複製的有利環境或增強宿主細胞對它的防禦。為了發現靶向重要生物標誌物(作為藥物靶標)的多分子藥物,訓練了基於深度神經網路架構的藥物標靶作用模型來預測這些藥物靶標的候選分子藥物。通過基於深度神經網路架構的藥物標靶作用模型,我們預測了針對重要生物標誌物(藥物靶標)的候選藥物。在篩選出符合藥物設計規範的候選藥物後,我們最終提出了波舒替尼、厄洛替尼和17-β-雌二醇作為治療SARS-CoV-2感染早期病毒載量快速放大期的多分子藥物以及厄洛替尼、17-β-雌二醇和舍曲林作為治療SARS-CoV-2感染病毒飽和期的多分子藥物。
The coronavirus disease 2019 (COVID-19) pandemic has claimed lots of lives since it has been reported in late December 2019. However, there is still no drug proven effective against it. In this study, the candidate host-pathogen-interactive (HPI) genome-wide genetic and epigenetic network (HPI-GWGEN) was constructed by big data mining. The reverse engineering method was applied to investigate the pathogenesis of SARS-CoV-2 infection by pruning the false positives in candidate HPI-GWGEN through the HPI RNA-seq time-profile data. Subsequently, with the principal network projection method and the annotation of KEGG pathway, we identified the significant biomarkers as drug targets to destroy the favorable environment for the replication of SARS-CoV-2 or enhance the defense of host cell against it. To discover the multiple-molecule drugs to target the significant biomarkers (as drug targets), a DNN-based DTI model was trained to predict candidate molecular drugs for these drug targets. By DNN-based DTI model, we predicted the candidate drugs targeting the significant biomarkers (drug targets). After screening candidate drugs with drug design specifications, we finally proposed bosutinib, erlotinib, and 17-beta-estradiol as the multiple-molecule drug for the treatment of rapid viral amplification stage of SARS-CoV-2 infection and erlotinib, 17-beta-estradiol, and sertraline as the multiple-molecule drug for the treatment of viral saturation stage of SARS-CoV-2 infection.
摘要--------I
Abstract--------II
誌謝--------III
Contents--------IV
1. Introduction--------1
2. Methods and Materials--------4
2.1 Overview the Systematic Drug Discovery--------4
2.2 Construction of the Candidate HPI-GWGEN by Big Data Mining--------6
2.3 Reverse Engineering Method by the Dynamic Models and HPI RNA-seq Time-Profile Data--------6
2.3.1 HPI RNA-seq Time-Profile Data--------6
2.3.2 Dynamic Models for HPI-GWGEN--------7
2.3.3 System Identification and System Order Selection for HPI-GWGEN--------11
2.4 PNP Method to Extract the Core HPI-GWGEN from Network Matrix of Real HPI-GWGEN--------18
2.5 Systematic Discovery and Design of Multiple-Molecule Drug by Utilizing DNN-Based DTI Model with Drug Design Specifications--------19
2.5.1 Preprocess of Targets and Drugs Data--------21
2.5.2. Architecture of DNN-Based DTI Model--------22
2.5.3. Drug Design Specifications--------22
3. Results--------23
3.1 Core HPI Signaling Pathways during Amplification and Saturation Stages of SARS-CoV-2 Infection by the Systems Biology Method--------23
3.2 Investigation of Core Specific HPI Signaling Pathways and their Downstream Abnormal Cellular Functions during SARS-CoV-2 Infection--------29
3.2.1 Investigation of Specific Core HPI Signaling Pathways of Amplification Infectious Stage--------29
3.2.2 Investigation of Common Core HPI Signaling Pathways of Amplification and Saturation Infectious Stages--------31
3.2.3 Investigation of Specific Core HPI Signaling Pathways of Saturation Infectious Stage--------33
3.3 Multiple-Molecule Drug Discovery and Design by DNN-Based DTI Model with Drug Design Specifications--------34
3.3.1. Prediction Performance of DNN-Based DTI Model--------35
3.3.2 Multiple-Molecule Drug Repositioning for Disrupting Progression of SARS-CoV-2 Infection--------37
4. Discussion--------40
5. Conclusion--------42
Reference--------43
Appendix A--------51
1. WHO. WHO. Available online: https://covid19.who.int/ (accessed on 22 June 2022).
2. Lechien, J.R., et al., Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. Journal of Internal Medicine, 2020. 288(3): p. 335-344.
3. Stokes, E.K., et al., Coronavirus Disease 2019 Case Surveillance - United States, January 22-May 30, 2020. MMWR. Morbidity and mortality weekly report, 2020. 69(24): p. 759-765.
4. Gordon, D.E., et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020. 583(7816): p. 459-468.
5. Kim, D., et al., The Architecture of SARS-CoV-2 Transcriptome. Cell, 2020. 181(4): p. 914-921.e10.
6. Wu, F., et al., A new coronavirus associated with human respiratory disease in China. Nature, 2020. 579(7798): p. 265-269.
7. Flynn, R.A., et al., Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell, 2021. 184(9): p. 2394-2411.e16.
8. Stukalov, A., et al., Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 2021. 594(7862): p. 246-252.
9. Balakrishnan, L. and B. Milavetz, Epigenetic Regulation of Viral Biological Processes. Viruses, 2017. 9(11).
10. Zhang, Q. and X. Cao, Epigenetic regulation of the innate immune response to infection. Nature Reviews Immunology, 2019. 19(7): p. 417-432.
11. Leong, M.M.L. and M.L. Lung, The Impact of Epstein-Barr Virus Infection on Epigenetic Regulation of Host Cell Gene Expression in Epithelial and Lymphocytic Malignancies. Frontiers in Oncology, 2021. 11.
12. Bartel, D.P., Metazoan MicroRNAs. Cell, 2018. 173(1): p. 20-51.
13. Qureshi, A., et al., VIRmiRNA: a comprehensive resource for experimentally validated viral miRNAs and their targets. Database : the journal of biological databases and curation, 2014. 2014: p. bau103.
14. Saliminejad, K., et al., An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol, 2019. 234(5): p. 5451-5465.
15. Dykes, I.M. and C. Emanueli, Transcriptional and Post-transcriptional Gene Regulation by Long Non-coding RNA. Genomics Proteomics Bioinformatics, 2017. 15(3): p. 177-186.
16. Ma, L., et al., LncBook: a curated knowledgebase of human long non-coding RNAs. Nucleic acids research, 2019. 47(D1): p. D128-D134.
17. Chen, L., Y. Zhou, and H. Li, LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus Research, 2018. 257: p. 25-32.
18. Waring, M.J., et al., An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat Rev Drug Discov, 2015. 14(7): p. 475-86.
19. Ashburn, T.T. and K.B. Thor, Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov, 2004. 3(8): p. 673-83.
20. Pushpakom, S., et al., Drug repurposing: progress, challenges and recommendations. Nature Reviews Drug Discovery, 2019. 18(1): p. 41-58.
21. Bayat Mokhtari, R., et al., Combination therapy in combating cancer. Oncotarget, 2017. 8(23): p. 38022-38043.
22. Maenza, J. and C. Flexner, Combination antiretroviral therapy for HIV infection. Am Fam Physician, 1998. 57(11): p. 2789-98.
23. Fang, J., et al., Efficacy of Early Combination Therapy With Lianhuaqingwen and Arbidol in Moderate and Severe COVID-19 Patients: A Retrospective Cohort Study. Frontiers in Pharmacology, 2020. 11.
24. Deng, J., et al., Efficacy of lopinavir–ritonavir combination therapy for the treatment of hospitalized COVID-19 patients: a meta-analysis. Future Virology, 2022. 17(3): p. 169-189.
25. Roshanshad, A., et al., The efficacy of remdesivir in coronavirus disease 2019 (COVID-19): a systematic review. Iran J Microbiol, 2020. 12(5): p. 376-387.
26. Ansems, K., et al., Remdesivir for the treatment of COVID-19. Cochrane Database Syst Rev, 2021. 8(8): p. Cd014962.
27. Gil-Sierra, M.D., et al., Efficacy of early use of remdesivir: a systematic review of subgroup analysis. Rev Esp Quimioter, 2022. 35(3): p. 249-259.
28. Bad news for Paxlovid? Coronavirus can find multiple ways to evade COVID-19 drug.
29. Chang, S., L.H. Wang, and B.-S. Chen, Investigating Core Signaling Pathways of Hepatitis B Virus Pathogenesis for Biomarkers Identification and Drug Discovery via Systems Biology and Deep Learning Method. Biomedicines, 2020. 8(9).
30. Chang, S., et al., Systems Approach to Pathogenic Mechanism of Type 2 Diabetes and Drug Discovery Design Based on Deep Learning and Drug Design Specifications. International Journal of Molecular Sciences, 2021. 22(1).
31. Huang da, W., B.T. Sherman, and R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44-57.
32. Huang da, W., B.T. Sherman, and R.A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res, 2009. 37(1): p. 1-13.
33. Salwinski, L., et al., The Database of Interacting Proteins: 2004 update. Nucleic Acids Res, 2004. 32(Database issue): p. D449-51.
34. Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Res, 2006. 34(Database issue): p. D535-9.
35. Bader, G.D., D. Betel, and C.W. Hogue, BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res, 2003. 31(1): p. 248-50.
36. Orchard, S., et al., The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 2013. 42(D1): p. D358-D363.
37. Licata, L., et al., MINT, the molecular interaction database: 2012 update. Nucleic Acids Res, 2012. 40(Database issue): p. D857-61.
38. Consortium, T.U., UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research, 2020. 49(D1): p. D480-D489.
39. Agarwal, V., et al., Predicting effective microRNA target sites in mammalian mRNAs. Elife, 2015. 4.
40. Friard, O., et al., CircuitsDB: a database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinformatics, 2010. 11: p. 435.
41. Li, J.-H., et al., starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 2013. 42(D1): p. D92-D97.
42. Bovolenta, L., M. Acencio, and N. Lemke, HTRIdb: an open-access database for experimentally verified human transcriptional regulation interactions. Nature Precedings, 2012.
43. Wingender, E., et al., TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res, 2000. 28(1): p. 316-9.
44. Zheng, G., et al., ITFP: an integrated platform of mammalian transcription factors. Bioinformatics, 2008. 24(20): p. 2416-7.
45. Chen, B.S. and C.C. Wu, Systems Biology: An Integrated Platform for Bioinformatics, Systems Synthetic Biology and Systems Metabolic Engineering. 2014: Nova Publishers.
46. Puray-Chavez, M., et al., Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Reports, 2021. 36(2): p. 109364.
47. Gaulton, A., et al., ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res, 2012. 40(Database issue): p. D1100-7.
48. Liu, T., et al., BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Research, 2007. 35(suppl_1): p. D198-D201.
49. Kim, S., et al., PubChem Substance and Compound databases. Nucleic Acids Res, 2016. 44(D1): p. D1202-13.
50. The UniProt, C., UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 2019. 47(D1): p. D506-D515.
51. Knox, C., et al., DrugBank 3.0: a comprehensive resource for 'omics' research on drugs. Nucleic Acids Res, 2011. 39(Database issue): p. D1035-41.
52. Dong, J., et al., PyBioMed: a python library for various molecular representations of chemicals, proteins and DNAs and their interactions. Journal of Cheminformatics, 2018. 10(1): p. 16.
53. Wen, M., et al., Deep-Learning-Based Drug–Target Interaction Prediction. Journal of Proteome Research, 2017. 16(4): p. 1401-1409.
54. You, J., R.D. McLeod, and P. Hu, Predicting drug-target interaction network using deep learning model. Computational Biology and Chemistry, 2019. 80: p. 90-101.
55. Srivastava, N., et al., Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 2014. 15(1): p. 1929-1958.
56. Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
57. Subramanian, A., et al., A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell, 2017. 171(6): p. 1437-1452. e17.
58. Seçilmiş, D., et al., Uncovering cancer gene regulation by accurate regulatory network inference from uninformative data. NPJ Syst Biol Appl, 2020. 6(1): p. 37.
59. Corsello, S.M., et al., Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nature Cancer, 2020. 1(2): p. 235-248.
60. Xiong, G., et al., ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 2021. 49(W1): p. W5-W14.
61. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003. 13(11): p. 2498-504.
62. Agajanian, M.J., et al., WNT Activates the AAK1 Kinase to Promote Clathrin-Mediated Endocytosis of LRP6 and Establish a Negative Feedback Loop. Cell Reports, 2019. 26(1): p. 79-93.e8.
63. Venkataraman, T., C.M. Coleman, and M.B. Frieman, Overactive Epidermal Growth Factor Receptor Signaling Leads to Increased Fibrosis after Severe Acute Respiratory Syndrome Coronavirus Infection. J Virol, 2017. 91(12).
64. Luo, S. and D.C. Rubinsztein, BCL2L11/BIM. Autophagy, 2013. 9(1): p. 104-105.
65. Häcker, G., Apoptosis in infection. Microbes and Infection, 2018. 20(9): p. 552-559.
66. Kumar, R., et al., Emetine suppresses SARS-CoV-2 replication by inhibiting interaction of viral mRNA with eIF4E. Antiviral Research, 2021. 189: p. 105056.
67. Campa, C.C., I. Franco, and E. Hirsch, PI3K-C2α: One enzyme for two products coupling vesicle trafficking and signal transduction. FEBS Letters, 2015. 589(14): p. 1552-1558.
68. Arcaro, A., et al., Class II Phosphoinositide 3-Kinases Are Downstream Targets of Activated Polypeptide Growth Factor Receptors. Molecular and Cellular Biology, 2000. 20(11): p. 3817-3830.
69. Abdi, K., et al., EGFR Signaling Termination via Numb Trafficking in Ependymal Progenitors Controls Postnatal Neurogenic Niche Differentiation. Cell Rep, 2019. 28(8): p. 2012-2022.e4.
70. Ramaiah, M.J., mTOR inhibition and p53 activation, microRNAs: The possible therapy against pandemic COVID-19. Gene Rep, 2020. 20: p. 100765.
71. Huang, K., et al., Long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 are differentially expressed in severe COVID-19 patients: An integrated single cell analysis. medRxiv, 2021.
72. Yao, J., et al., Long non-coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling. EMBO Mol Med, 2016. 8(4): p. 346-62.
73. Zhuang, M., et al., MALAT1 sponges miR-106b-5p to promote the invasion and metastasis of colorectal cancer via SLAIN2 enhanced microtubules mobility. EBioMedicine, 2019. 41: p. 286-298.
74. Ivanovska, I., et al., MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol, 2008. 28(7): p. 2167-74.
75. Su, M., et al., A Mini-Review on Cell Cycle Regulation of Coronavirus Infection. Frontiers in Veterinary Science, 2020. 7.
76. Iwamoto, M., et al., Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proceedings of the National Academy of Sciences, 2019. 116(17): p. 8487-8492.
77. Hu, W., et al., Epidermal growth factor receptor is a co-factor for transmissible gastroenteritis virus entry. Virology, 2018. 521: p. 33-43.
78. Zheng, M., et al., TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nature Immunology, 2021. 22(7): p. 829-838.
79. DePaolo, R.W., et al., The Chemokine CCL2 Is Required for Control of Murine Gastric Salmonella enterica Infection. Infection and Immunity, 2005. 73(10): p. 6514-6522.
80. Gschwandtner, M., R. Derler, and K.S. Midwood, More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Frontiers in Immunology, 2019. 10.
81. Dinarello, C.A., Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological Reviews, 2018. 281(1): p. 8-27.
82. Rath, P.C. and B.B. Aggarwal, TNF-induced signaling in apoptosis. J Clin Immunol, 1999. 19(6): p. 350-64.
83. Wu, B., et al., Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell, 2013. 152(1-2): p. 276-89.
84. Alcami, A. and U.H. Koszinowski, Viral mechanisms of immune evasion. Trends in Microbiology, 2000. 8(9): p. 410-418.
85. Sui, L., et al., SARS-CoV-2 Membrane Protein Inhibits Type I Interferon Production Through Ubiquitin-Mediated Degradation of TBK1. Frontiers in Immunology, 2021. 12.
86. Vaz de Paula, C.B., et al., COVID-19: Immunohistochemical Analysis of TGF-β Signaling Pathways in Pulmonary Fibrosis. Int J Mol Sci, 2021. 23(1).
87. Ferner, R.E. and J.K. Aronson, Remdesivir in covid-19. BMJ, 2020. 369: p. m1610.
88. Wang, W., et al., SARS-CoV-2 N Protein Induces Acute Kidney Injury via Smad3-Dependent G1 Cell Cycle Arrest Mechanism. Adv Sci (Weinh), 2022. 9(3): p. e2103248.
89. Kellici, T.F., E.S. Pilka, and M.J. Bodkin, Therapeutic Potential of Targeting Plasminogen Activator Inhibitor-1 in COVID-19. Trends in Pharmacological Sciences, 2021. 42(6): p. 431-433.
90. Angiolillo, A.L., et al., Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med, 1995. 182(1): p. 155-62.
91. Romagnani, P., et al., Interferon-inducible protein 10, monokine induced by interferon gamma, and interferon-inducible T-cell alpha chemoattractant are produced by thymic epithelial cells and attract T-cell receptor (TCR) alphabeta+ CD8+ single-positive T cells, TCRgammadelta+ T cells, and natural killer-type cells in human thymus. Blood, 2001. 97(3): p. 601-7.
92. Sidahmed, A.M., et al., CXCL10 contributes to p38-mediated apoptosis in primary T lymphocytes in vitro. Cytokine, 2012. 59(2): p. 433-41.
93. BAX BCL2 associated X, apoptosis regulator [ Homo sapiens (human) ]. Available from: https://www.ncbi.nlm.nih.gov/gene/581.
94. Milhas, D., et al., Caspase-10 Triggers Bid Cleavage and Caspase Cascade Activation in FasL-induced Apoptosis. The Journal of biological chemistry, 2005. 280: p. 19836-42.
95. Dzimianski, J.V., et al., ISG15: It's Complicated. Journal of Molecular Biology, 2019. 431(21): p. 4203-4216.
96. Bizzotto, J., et al., SARS-CoV-2 Infection Boosts MX1 Antiviral Effector in COVID-19 Patients. iScience, 2020. 23(10): p. 101585.
97. Kausar, S., et al., A review: Mechanism of action of antiviral drugs. Int J Immunopathol Pharmacol, 2021. 35: p. 20587384211002621.
98. Piacentini, S., et al., Nitazoxanide inhibits paramyxovirus replication by targeting the Fusion protein folding: role of glycoprotein-specific thiol oxidoreductase ERp57. Sci Rep, 2018. 8(1): p. 10425.
99. Segrelles, C., et al., Bosutinib Inhibits EGFR Activation in Head and Neck Cancer. Int J Mol Sci, 2018. 19(7).
100. Wang, Y., G. Schmid-Bindert, and C. Zhou, Erlotinib in the treatment of advanced non-small cell lung cancer: an update for clinicians. Ther Adv Med Oncol, 2012. 4(1): p. 19-29.
101. Jeong, J. and J. Kim, Combination Effect of Cilengitide with Erlotinib on TGF-β1-Induced Epithelial-to-Mesenchymal Transition in Human Non-Small Cell Lung Cancer Cells. Int J Mol Sci, 2022. 23(7).
102. National Center for Biotechnology Information. PubChem Compound Summary for CID 5757, Estradiol. https://pubchem.ncbi.nlm.nih.gov/compound/5757. Accessed July 25, 2022.
103. Kröger, A., et al., IRF-1 reverts the transformed phenotype of oncogenically transformed cells in vitro and in vivo. Oncogene, 2003. 22(7): p. 1045-1056.
104. Malek, D., R. Gust, and B. Kleuser, 17-Beta-estradiol inhibits transforming-growth-factor-beta-induced MCF-7 cell migration by Smad3-repression. Eur J Pharmacol, 2006. 534(1-3): p. 39-47.
105. Penna, C., et al., Sex-related differences in COVID-19 lethality. British Journal of Pharmacology, 2020. 177(19): p. 4375-4385.
106. Bhopal, S.S. and R. Bhopal, Sex differential in COVID-19 mortality varies markedly by age. The Lancet, 2020. 396(10250): p. 532-533.
107. Doerre, A. and G. Doblhammer, The influence of gender on COVID-19 infections and mortality in Germany: Insights from age-and gender-specific modeling of contact rates, infections, and deaths in the early phase of the pandemic. Plos one, 2022. 17(5): p. e0268119.
108. Zafari Zangeneh, F. and M. Sarmast Shoushtari, Estradiol and COVID-19: Does 17-Estradiol Have an Immune-Protective Function in Women Against Coronavirus? J Family Reprod Health, 2021. 15(3): p. 150-159.
109. Gil-Ad, I., et al., Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int J Oncol, 2008. 33(2): p. 277-286.
110. Chen, S., et al., Sertraline, an Antidepressant, Induces Apoptosis in Hepatic Cells Through the Mitogen-Activated Protein Kinase Pathway. Toxicological Sciences, 2014. 137(2): p. 404-415.
111. Xia, D., et al., Sertraline exerts its antitumor functions through both apoptosis and autophagy pathways in acute myeloid leukemia cells. Leuk Lymphoma, 2017. 58(9): p. 1-10.
112. Halperin, D. and G. Reber, Influence of antidepressants on hemostasis. Dialogues Clin Neurosci, 2007. 9(1): p. 47-59.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以系統生物學方法和大數據資料庫探勘分析正常、發育和再生肝臟之間的基因和表觀遺傳差異細胞網路機制
2. 利用遺傳和表觀遺傳宿主-病毒網路和真實世界的雙邊RNA-Seq數據研究發病機制並鑑定人類呼吸道合胞病毒藥物再利用的生物標誌物:系統生物學和深度學習方法
3. 以深度學習方法探索預測結腸癌復發的預後標記
4. 基於系統致癌機制和深度學習方法探討三陰性乳腺和非三陰性乳腺癌的系統藥物發現和設計
5. 基於系統生物學方法與深度學習的胃癌系統藥物設計
6. 垂直式與側流式紙基免疫分析試片之開發 —— 以燒燙傷口深度與新冠肺炎檢測為實施例
7. 電雙層場效電晶體生物感測器之SARS-CoV-2 病毒蛋白快篩平台的開發研究
8. 以新型冠狀病毒棘突蛋白受體結合區融合大腸桿菌第二型b型忌熱型腸毒素A次單元開發鼻噴型新冠肺炎黏膜疫苗
9. 醣遮蔽棘蛋白技術開發第三代新冠肺炎疫苗抗原
10. 整合型微流體平台於新冠病毒偵測技術之應用
11. 以去醣化與醣遮蔽棘蛋白抗原開發次世代新冠疫苗
12. 通過系統生物學方法和基於五種藥物設計規範的 DNN-DTI 模型重新定位 COVID-19 相關急性呼吸窘迫綜合徵和非病毒性急性呼吸窘迫綜合徵的多分子藥物療法
13. 核酸適體篩選技術之自動化微流控系統研發及其於 SARS-CoV-2 S1 protein適體之篩選
14. 以電雙層閘控場效電晶體建立的生物感測平台進行細胞增生及核酸檢測之開發研究
15. 開發一個快速且穩定的感染抑制劑篩選平台以對抗嚴重特殊傳染性肺炎
 
* *