帳號:guest(18.225.234.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉柏逸
作者(外文):Ye, Bo-Yi.
論文名稱(中文):以動態浮水印法進行微電網通信網路之入侵偵測與隔離
論文名稱(外文):Intrusion Detection and Isolation of Communication Networks in Microgrids Using Dynamic Watermarking
指導教授(中文):朱家齊
指導教授(外文):Chu, Chia-Chi
口試委員(中文):劉建宏
鄧人豪
黃維澤
口試委員(外文):Liu, Jian-Hong
Teng, Jen-Hao
Huang, Wei-Tzer
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061599
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:55
中文關鍵詞:電池儲能系統太陽能發電系統下垂控制分散式二次控制樹莓派虛實整合系統網路攻擊攻擊檢測動態浮水印
外文關鍵詞:BESSPVdroop controldistributed secondary controlR-PiCPScyber attacksattack detectiondynamic watermarking
相關次數:
  • 推薦推薦:0
  • 點閱點閱:437
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文整合太陽能發電系統 (Photovoltaic System, PV) 與電池儲能系統 (Battery Energy Storage System, BESS) 於微電網 (Microgrid, MG) 上的應用,將系統操作在併網模式以及孤島模式,併網模式時使用定功率控制,孤島模式時使用下垂控制,使各個子系統可以將功率平衡供應給負載,達到功率共享。下垂控制會造成系統頻率與電壓的穩態誤差,因此需要引進二次控制,使系統頻率與電壓回升到標稱值。本文使用分散式共識二次控制,透過樹莓派 (Raspberry Pi, R-Pi) 來達到各自分散式發電系統 (Distributed Generation, DG) 的資料傳輸,因此實現了虛實整合系統 (Cyber-Physical System, CPS)。物理系統由微電網電路架構與下垂控制器組成;網路系統由樹莓派組成,執行分散式二次控制。由於分散式控制需要網路溝通,所以會有網路攻擊的產生,包含錯誤資料注入攻擊 (False Data Injection, FDI)、拒絕服務攻擊 (Denial of Service, DoS) 和揭發攻擊 (Disclosure Attack) ……等等,在網路安全這部分也極為重要。本文使用了動態浮水印法進行網路攻擊的偵測,引進卡爾曼濾波器估測出系統的內部狀態,在發生攻擊時,透過檢測攻擊指標能夠即時順利檢測並且隔離遭受到攻擊的分散式發電系統之相關資料,使系統可以繼續運行。
This thesis addresses operations of a micro-grid (MG) by integrating the photovoltaic (PV) system and the battery energy storage system (BESS). The MG can be operated in both grid-connected mode and islanded mode. Usually, the constant power control is considered in grid-connected mode, and the droop control is used in islanded mode to achieve proper power sharing. The droop control will cause the steady-state error of the system frequency and voltage, so it is necessary to introduce secondary control to make the system frequency and voltage restore to the nominal value. In this thesis, the distributed secondary control is used to achieve the data transmission of the respective distributed generation (DG) through the Raspberry Pi (R-Pi), thus realizing the cyber-physical system (CPS). The physical system consists of a MG with a local droop control; the cyber system consists of a R-Pi, which performs distributed secondary control. Since the distributed control requires network communication, there will be affected by cyber attacks such as disclosure attacks, false data injection (FDI), and denial of service (DoS), how to detect cyber attacks and prevent cascaded blackouts becomes a crucial issue. This study exploits the dynamic watermarking method to detect these cyber attacks, and the Kalman Filter is introduced to estimate the internal state of the system. When an attack occurs, the indicators of the attack detection can successfully detect and isolate the relevant data of the attacked DG in a short period.
Contents
Abstract I
摘要 II
致謝 III
Contents IV
List of Figures VI
List of Tables VIII
Nomenclature IX
1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Review 1
1.3 Contributions of the Thesis 4
2 Architecture of Microgrid 5
2.1 Photovoltaic System 5
2.1.1 PV System Structure 6
2.1.2 Maximum Power Point Tracking Control 7
2.2 Battery Energy Storage System 9
2.2.1 BESS Structure 9
2.2.2 DC Converter 10
2.3 Voltage-Sourced Converter 11
2.3.1 Grid-Connected Mode 11
2.3.2 Primary Control 16
2.3.3 Distributed Secondary Control 19
2.4 Small-Signal Model of the MG 20
2.5 Chapter Conclusion 22
3 Cyber Attacks in isolated MGs 23
3.1 Cyber Attacks 23
3.1.1 Disclosure Attacks 23
3.1.2 False Data Injection (FDI) 23
3.1.3 Denial of Service (DoS) 24
3.1.4 Vulnerability Assessment 24
3.2 Attack Detection 25
3.2.1 Dynamic Watermarking Signal 26
3.2.2 Kalman Filter For Estimating States 27
3.2.3 Cyber Attack Indicators 28
3.3 Chapter Conclusion 31
4 Simulation Results 32
4.1 Introduction to OPAL-RT and Simulation Platform 32
4.2 Cyber-Physical System Implementation 35
4.3 Matlab/Simulink Simulation 36
4.4 OPAL-RT Experiment 38
4.5 Cyber-Physical System Simulation 40
4.6 Cyber Attacks 42
4.6.1 Case 1 False Data Injection 42
4.6.2 Case 2 Denial of Service 45
4.6.3 Attack Detection 47
4.7 Chapter Conclusion 47
5 Summary and Future Work 49
5.1 Summary 49
5.2 Future Work 49
REFERENCE 50
[1] H. Mahmood and J. Jiang, “Autonomous coordination of multiple PV/Battery hybrid units in islanded microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp.6359–6368, Nov. 2018.
[2] H. Mahmood, D. Michaelson, and J. Jiang, “Decentralized power management of a PV/battery hybrid unit in a droop controlled islanded microgrid,” IEEE Trans. Power Electron, vol. 30, no. 12, pp. 7215–7229, Dec. 2015.
[3] H. Mahmood, D. Michaelson, and J. Jiang, “Strategies for independent deployment and autonomous control of PV and battery units in islanded microgrids,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 3, pp. 742–755, Sep. 2015.
[4] H. Mahmood, D. Michaelson, and J. Jiang, “A power management strategy for PV/battery hybrid systems in islanded microgrids,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 4, pp. 870–882, Dec. 2014.
[5] Z. Miao, L. Xu, V. R. Disfani, and L. Fam, “An SOC-based battery management system for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 966–973, Mar. 2014.
[6] M. Farrokhabadi, S. K ̈onig, C. A. Ca ̃nizares, K. Bhattacharya and T. Leibfried, ”Battery energy storage system models for microgrid stability analysis and dynamic simulation,” IEEE Trans. Power Systems, vol. 33, no. 2, pp. 2301-2312, Mar. 2018.
[7] O. M. Akeyo, V. Rallabandi, N. Jewell, and D. M. Ionel, “The design and analysis of large solar PV farm configurations with DC-Connected battery systems,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2903–2912, May/Jun. 2020.
[8] S. Adhikari and F. Li, “Coordinated V-f and P-Q control of solar photovoltaic generators with MPPT and battery storage in microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1270–1281, May 2014.
[9] V. Rallabandi, O. M. Akeyo, N. Jewell and D. M. Ionel, ”Incorporating battery energy storage systems into multi-MW grid connected PV systems,” IEEE Trans. Ind. Appli., vol. 55, no. 1, pp. 638-647, Jan./Feb. 2019.
[10] K. D. Hoang and H. H. Lee, ”Accurate power sharing with balanced battery state of charge in distributed DC microgrid,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 1883-1893, Mar. 2019.
[11] P. Lin, T. Zhao, B. Wang, Y. Wang and P. Wang, ”A semi-consensus strategy toward multi-functional hybrid energy storage system in DC microgrids,” IEEE Trans. Energy Convers., vol. 35, no. 1, pp. 336-346, Mar. 2020.
[12] J. Khazaei and Z. Miao, ”Consensus control for energy storage systems,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3009-3017, Jul. 2018.
[13] X. Chen et al., ”Distributed cooperative control of multiple hybrid energy storage systems in a DC microgrid using consensus protocol,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 1968-1979, Mar. 2020.
[14] B. Wang et al., ”Consensus-based control of hybrid energy storage system with a cascaded multiport converter in DC microgrids,” IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 2356-2366, Oct. 2020.
[15] Y. Hong, D. Xu, W. Yang, B. Jiang and X. -G. Yan, ”A novel multi-agent model-free control for state-of-charge balancing between distributed battery energy storage systems,” IEEE Trans. Emerging Top. Comput. Intell., vol. 5, no. 4, pp. 679-688, Aug. 2021.
[16] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez and L. Huang, ”State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, Jun. 2014.
[17] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez and L. Huang, ”Double-quadrant state-of-charge-based droop control method for distributed energy storage systems in autonomous DC microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 147-157, Jan. 2015.
[18] J. Jiang, S. Peyghami, C. Coates and F. Blaabjerg, “A decentralized reliability-enhanced power sharing strategy for PV-based microgrids,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 7281-7293, Jun. 2021.
[19] E. Espina, R. Cardenas-Dobson, J. W. Simpson-Porco, D. Saez, and M. Kazerani, “A consensus-based secondary control strategy for hybrid AC/DC microgrids with experimental validation,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5971–5984, May 2021.
[20] G. Chen, Z. Li, and M. Wei, “Distributed fixed-time secondary frequency and voltage control of islanded microgrids,” in Proc. Chin. Control Conf., Dalian, China, 2017, pp. 1768–1785.
[21] Y. Wang, T. L. Nguyen, Y. Xu, D. Shi, “Distributed control of heterogeneous energy storage systems in islanded microgrids: Finite-time approach and cyber-physical implementation,” International Journal of Electrical Power and Energy Systems, vol. 119, Jul. 2020.
[22] Y. Wang, T. L. Nguyen, Y. Xu, Z. Li, Q. Tran, and R. Caire, “Cyber-physical design and implementation of distributed event-triggered secondary control in islanded microgrids,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 5631–5642, Nov./Dec. 2019.
[23] J. Huang, L. Kong, G. Chen, M.-Y. Wu, X. Liu, and P. Zeng, “Towards secure industrial IoT: Blockchain system with credit-based consensus mechanism,” IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3680–3689, Jun. 2019.
[24] J. Choi, S. I. Habibi and A. Bidram, “Distributed Finite-Time Event-Triggered Frequency and Voltage Control of AC Microgrids,” IEEE Trans. Power Systems, vol. 37, no. 3, pp. 1979-1994, May 2022.
[25] T. Nguyen, Q. Tran, R. Caire, N. Luu, and Y. Besanger, “Controller hardware-in-the-loop implementation for agent-based distributed optimal power flow using ADMM on cyber-physical microgrids,”in IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), 2019, pp. 712-717.
[26] K. Mohammadi, E. Azizi, J. Choi, M-T Hamidi-Beheshti, A. Bidram, S. Bolouki, “Asynchronous periodic distributed event-triggered voltage and frequency control of microgrids,” IEEE Trans Power Systems, vol. 36, no. 5, pp. 4524-4538, Sep 2021.
[27] S. Rath, D. Pal, P. S. Sharma, and B. K. Panigrahi, “A cyber-secure distributed control architecture for autonomous ac microgrid,” IEEE Systems Journal, vol. 15, no. 3, pp. 3324-3335, Sep 2021.
[28] M. H. Cintuglu, O. A. Mohammed, K. Akkaya, and A. S. Uluagac, “A survey on smart grid cyber-physical system testbeds,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 446–464, First quarter 2017.
[29] O. A. Beg, T. T. Johnson, and A. Davoudi, “Detection of false-data injection attacks in cyber-physical dc microgrids,” IEEE Trans. Ind. Informat., vol. 13, no. 5, pp. 2693–2703, Oct. 2017.
[30] D. Shi, P. Lin, Y. Wang, C.-C. Chu, Y. Xu, and P. Wang, “Deception attack detection of isolated DC microgrids under consensus-based distributed voltage control architecture,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 11, no. 1, pp. 155–167, Mar. 2021.
[31] S. Liu, P. X. Liu, and X. Wang, “Effects of cyber attacks on islanded microgrid frequency control,” in Proc. IEEE 20th Int. Conf. Comput. Supported Cooperat. Work Design (CSCWD), May 2016, pp. 461–464.
[32] C. Deng, Y. Wang, C. Wen, Y. Xu, and P. Lin, “Distributed resilient control for energy storage systems in cyber-physical microgrids,” IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 1331–1341, Feb. 2021.
[33] Q. Zhou, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “A cyber-attack resilient distributed control strategy in islanded microgrids,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 3690-3701, Sep. 2020.
[34] M. M. Rana, L. Li, and S. W. Su, “Cyber attack protection and control of microgrids,” IEEE/CAAJ. Automatica Sin., vol. 5, no. 2, pp. 602–609, Mar. 2018.
[35] P. Srikantha and D. Kundur, “Denial of service attacks and mitigation for stability in cyber-enabled power grid,” in Proc. IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf., 2015, pp. 1–5.
[36] A. Aluko, R. Musumpuka and D. Dorrell, ”Cyberattack-resilient secondary frequency control scheme for stand-alone microgrids,” IEEE Trans. Ind. Electron., Mar. 2022.
[37] T. Huang, B. Wang, J. Ramos-Ruiz, P. Enjeti, P. R. Kumar, and L. Xie, “Detection of cyber attacks in renewable-rich microgrids using dynamic watermarking,” in Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), 2020, pp. 1–5.
[38] B. Satchidanandan and P. R. Kumar, “Dynamic watermarking: Active defense of networked cyber–physical systems,” Proc. IEEE, vol. 105, no. 2, pp. 219–240, Feb. 2017.
[39] T. Huang et al., ”Enabling secure peer-to-peer energy transactions through dynamic watermarking in electric distribution grids: defending the distribution system against sophisticated cyberattacks with a provable guarantee,” IEEE Electrification Magazine, vol. 9, no. 3, pp. 55-64, Sep. 2021.
[40] E. Handschin, F.C. Schweppe, J. Kohlas, A. Fiechter, Bad data analysis for power system state estimation, IEEE Trans. Power Apparatus Syst., vol. 94, no. 2, pp. 329-337, 1975.
[41] K. Pan, A. Teixeira, M. Cvetkovic, and P. Palensky, “Cyber risk analysis of combined data attacks against power system state estimation,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3044–3056, May 2019.
[42] O. A. Beg, L. V. Nguyen, T. T. Johnson, and A. Davoudi, “Signal temporal logic-based attack detection in DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3585–3595, Jul. 2019.
[43] O. A. Beg, T. T. Johnson, and A. Davoudi, “Detection of false-data injection attacks in cyber-physical dc microgrids,” IEEE Trans. Ind. Informat., vol. 13, no. 5, pp. 2693–2703, Oct. 2017.
[44] T. Huang, B. Satchidanandan, P. R. Kumar, and L. Xie, “An online detection framework for cyber attacks on automatic generation control,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6816–6827, Nov. 2018.
[45] B. Satchidanandan and P. Kumar, “On minimal tests of sensor veracity for dynamic watermarking-based defense of cyber-physical systems,” in Proc. 9th Int. Conf. Commun. Syst. Netw., Jan. 2017, pp. 23–30.
[46] E. A. Coelho et al., “Small-signal analysis of the microgrid secondary control considering a communication time delay,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6257–6269, Oct. 2016.
[47] S. Sumathi, L. Ashok Kumar, P. Surekha (auth.), Solar PV and Wind Energy Conversion Systems: An Introduction to Theory, Modeling With MATLAB/SIMULINK, and the Role of Soft Computing Techniques. springer international publishing, Switzerland, 2015.
[48] W. Xiao, Photovoltaic Power System: Modeling, Design and Control. Hoboken, NJ, USA: Wiley, 2017.
[49] D. Bazargan, “A study of battery energy storage dynamics in power systems,” Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Manitoba, Winnipeg, MB, Canada, 2014.
[50] A. Yazdani and R. Iravani, Voltage-Sourced Converter in Power Systems: Modelling, Control, and Application. New York, NY, USA: Wiley, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *