|
[1] H. Mahmood and J. Jiang, “Autonomous coordination of multiple PV/Battery hybrid units in islanded microgrids,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp.6359–6368, Nov. 2018. [2] H. Mahmood, D. Michaelson, and J. Jiang, “Decentralized power management of a PV/battery hybrid unit in a droop controlled islanded microgrid,” IEEE Trans. Power Electron, vol. 30, no. 12, pp. 7215–7229, Dec. 2015. [3] H. Mahmood, D. Michaelson, and J. Jiang, “Strategies for independent deployment and autonomous control of PV and battery units in islanded microgrids,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 3, pp. 742–755, Sep. 2015. [4] H. Mahmood, D. Michaelson, and J. Jiang, “A power management strategy for PV/battery hybrid systems in islanded microgrids,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 4, pp. 870–882, Dec. 2014. [5] Z. Miao, L. Xu, V. R. Disfani, and L. Fam, “An SOC-based battery management system for microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 966–973, Mar. 2014. [6] M. Farrokhabadi, S. K ̈onig, C. A. Ca ̃nizares, K. Bhattacharya and T. Leibfried, ”Battery energy storage system models for microgrid stability analysis and dynamic simulation,” IEEE Trans. Power Systems, vol. 33, no. 2, pp. 2301-2312, Mar. 2018. [7] O. M. Akeyo, V. Rallabandi, N. Jewell, and D. M. Ionel, “The design and analysis of large solar PV farm configurations with DC-Connected battery systems,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2903–2912, May/Jun. 2020. [8] S. Adhikari and F. Li, “Coordinated V-f and P-Q control of solar photovoltaic generators with MPPT and battery storage in microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1270–1281, May 2014. [9] V. Rallabandi, O. M. Akeyo, N. Jewell and D. M. Ionel, ”Incorporating battery energy storage systems into multi-MW grid connected PV systems,” IEEE Trans. Ind. Appli., vol. 55, no. 1, pp. 638-647, Jan./Feb. 2019. [10] K. D. Hoang and H. H. Lee, ”Accurate power sharing with balanced battery state of charge in distributed DC microgrid,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 1883-1893, Mar. 2019. [11] P. Lin, T. Zhao, B. Wang, Y. Wang and P. Wang, ”A semi-consensus strategy toward multi-functional hybrid energy storage system in DC microgrids,” IEEE Trans. Energy Convers., vol. 35, no. 1, pp. 336-346, Mar. 2020. [12] J. Khazaei and Z. Miao, ”Consensus control for energy storage systems,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3009-3017, Jul. 2018. [13] X. Chen et al., ”Distributed cooperative control of multiple hybrid energy storage systems in a DC microgrid using consensus protocol,” IEEE Trans. Ind. Electron., vol. 67, no. 3, pp. 1968-1979, Mar. 2020. [14] B. Wang et al., ”Consensus-based control of hybrid energy storage system with a cascaded multiport converter in DC microgrids,” IEEE Trans. Sustain. Energy, vol. 11, no. 4, pp. 2356-2366, Oct. 2020. [15] Y. Hong, D. Xu, W. Yang, B. Jiang and X. -G. Yan, ”A novel multi-agent model-free control for state-of-charge balancing between distributed battery energy storage systems,” IEEE Trans. Emerging Top. Comput. Intell., vol. 5, no. 4, pp. 679-688, Aug. 2021. [16] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez and L. Huang, ”State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, Jun. 2014. [17] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez and L. Huang, ”Double-quadrant state-of-charge-based droop control method for distributed energy storage systems in autonomous DC microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 147-157, Jan. 2015. [18] J. Jiang, S. Peyghami, C. Coates and F. Blaabjerg, “A decentralized reliability-enhanced power sharing strategy for PV-based microgrids,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 7281-7293, Jun. 2021. [19] E. Espina, R. Cardenas-Dobson, J. W. Simpson-Porco, D. Saez, and M. Kazerani, “A consensus-based secondary control strategy for hybrid AC/DC microgrids with experimental validation,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5971–5984, May 2021. [20] G. Chen, Z. Li, and M. Wei, “Distributed fixed-time secondary frequency and voltage control of islanded microgrids,” in Proc. Chin. Control Conf., Dalian, China, 2017, pp. 1768–1785. [21] Y. Wang, T. L. Nguyen, Y. Xu, D. Shi, “Distributed control of heterogeneous energy storage systems in islanded microgrids: Finite-time approach and cyber-physical implementation,” International Journal of Electrical Power and Energy Systems, vol. 119, Jul. 2020. [22] Y. Wang, T. L. Nguyen, Y. Xu, Z. Li, Q. Tran, and R. Caire, “Cyber-physical design and implementation of distributed event-triggered secondary control in islanded microgrids,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 5631–5642, Nov./Dec. 2019. [23] J. Huang, L. Kong, G. Chen, M.-Y. Wu, X. Liu, and P. Zeng, “Towards secure industrial IoT: Blockchain system with credit-based consensus mechanism,” IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3680–3689, Jun. 2019. [24] J. Choi, S. I. Habibi and A. Bidram, “Distributed Finite-Time Event-Triggered Frequency and Voltage Control of AC Microgrids,” IEEE Trans. Power Systems, vol. 37, no. 3, pp. 1979-1994, May 2022. [25] T. Nguyen, Q. Tran, R. Caire, N. Luu, and Y. Besanger, “Controller hardware-in-the-loop implementation for agent-based distributed optimal power flow using ADMM on cyber-physical microgrids,”in IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), 2019, pp. 712-717. [26] K. Mohammadi, E. Azizi, J. Choi, M-T Hamidi-Beheshti, A. Bidram, S. Bolouki, “Asynchronous periodic distributed event-triggered voltage and frequency control of microgrids,” IEEE Trans Power Systems, vol. 36, no. 5, pp. 4524-4538, Sep 2021. [27] S. Rath, D. Pal, P. S. Sharma, and B. K. Panigrahi, “A cyber-secure distributed control architecture for autonomous ac microgrid,” IEEE Systems Journal, vol. 15, no. 3, pp. 3324-3335, Sep 2021. [28] M. H. Cintuglu, O. A. Mohammed, K. Akkaya, and A. S. Uluagac, “A survey on smart grid cyber-physical system testbeds,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 446–464, First quarter 2017. [29] O. A. Beg, T. T. Johnson, and A. Davoudi, “Detection of false-data injection attacks in cyber-physical dc microgrids,” IEEE Trans. Ind. Informat., vol. 13, no. 5, pp. 2693–2703, Oct. 2017. [30] D. Shi, P. Lin, Y. Wang, C.-C. Chu, Y. Xu, and P. Wang, “Deception attack detection of isolated DC microgrids under consensus-based distributed voltage control architecture,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 11, no. 1, pp. 155–167, Mar. 2021. [31] S. Liu, P. X. Liu, and X. Wang, “Effects of cyber attacks on islanded microgrid frequency control,” in Proc. IEEE 20th Int. Conf. Comput. Supported Cooperat. Work Design (CSCWD), May 2016, pp. 461–464. [32] C. Deng, Y. Wang, C. Wen, Y. Xu, and P. Lin, “Distributed resilient control for energy storage systems in cyber-physical microgrids,” IEEE Trans. Ind. Informat., vol. 17, no. 2, pp. 1331–1341, Feb. 2021. [33] Q. Zhou, M. Shahidehpour, A. Alabdulwahab, and A. Abusorrah, “A cyber-attack resilient distributed control strategy in islanded microgrids,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 3690-3701, Sep. 2020. [34] M. M. Rana, L. Li, and S. W. Su, “Cyber attack protection and control of microgrids,” IEEE/CAAJ. Automatica Sin., vol. 5, no. 2, pp. 602–609, Mar. 2018. [35] P. Srikantha and D. Kundur, “Denial of service attacks and mitigation for stability in cyber-enabled power grid,” in Proc. IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf., 2015, pp. 1–5. [36] A. Aluko, R. Musumpuka and D. Dorrell, ”Cyberattack-resilient secondary frequency control scheme for stand-alone microgrids,” IEEE Trans. Ind. Electron., Mar. 2022. [37] T. Huang, B. Wang, J. Ramos-Ruiz, P. Enjeti, P. R. Kumar, and L. Xie, “Detection of cyber attacks in renewable-rich microgrids using dynamic watermarking,” in Proc. IEEE Power Energy Soc. Gen. Meeting (PESGM), 2020, pp. 1–5. [38] B. Satchidanandan and P. R. Kumar, “Dynamic watermarking: Active defense of networked cyber–physical systems,” Proc. IEEE, vol. 105, no. 2, pp. 219–240, Feb. 2017. [39] T. Huang et al., ”Enabling secure peer-to-peer energy transactions through dynamic watermarking in electric distribution grids: defending the distribution system against sophisticated cyberattacks with a provable guarantee,” IEEE Electrification Magazine, vol. 9, no. 3, pp. 55-64, Sep. 2021. [40] E. Handschin, F.C. Schweppe, J. Kohlas, A. Fiechter, Bad data analysis for power system state estimation, IEEE Trans. Power Apparatus Syst., vol. 94, no. 2, pp. 329-337, 1975. [41] K. Pan, A. Teixeira, M. Cvetkovic, and P. Palensky, “Cyber risk analysis of combined data attacks against power system state estimation,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3044–3056, May 2019. [42] O. A. Beg, L. V. Nguyen, T. T. Johnson, and A. Davoudi, “Signal temporal logic-based attack detection in DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3585–3595, Jul. 2019. [43] O. A. Beg, T. T. Johnson, and A. Davoudi, “Detection of false-data injection attacks in cyber-physical dc microgrids,” IEEE Trans. Ind. Informat., vol. 13, no. 5, pp. 2693–2703, Oct. 2017. [44] T. Huang, B. Satchidanandan, P. R. Kumar, and L. Xie, “An online detection framework for cyber attacks on automatic generation control,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6816–6827, Nov. 2018. [45] B. Satchidanandan and P. Kumar, “On minimal tests of sensor veracity for dynamic watermarking-based defense of cyber-physical systems,” in Proc. 9th Int. Conf. Commun. Syst. Netw., Jan. 2017, pp. 23–30. [46] E. A. Coelho et al., “Small-signal analysis of the microgrid secondary control considering a communication time delay,” IEEE Trans. Ind. Electron., vol. 63, no. 10, pp. 6257–6269, Oct. 2016. [47] S. Sumathi, L. Ashok Kumar, P. Surekha (auth.), Solar PV and Wind Energy Conversion Systems: An Introduction to Theory, Modeling With MATLAB/SIMULINK, and the Role of Soft Computing Techniques. springer international publishing, Switzerland, 2015. [48] W. Xiao, Photovoltaic Power System: Modeling, Design and Control. Hoboken, NJ, USA: Wiley, 2017. [49] D. Bazargan, “A study of battery energy storage dynamics in power systems,” Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Manitoba, Winnipeg, MB, Canada, 2014. [50] A. Yazdani and R. Iravani, Voltage-Sourced Converter in Power Systems: Modelling, Control, and Application. New York, NY, USA: Wiley, 2010. |