帳號:guest(3.145.8.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柯瀚翔
作者(外文):Ke, Han-Xiang
論文名稱(中文):具漣波補償三相三線高低頻互補換流器研製
論文名稱(外文):Design and Implementation of Ripple-Current Compensation for Three-Phase Three-Wire Hybrid Frequency Inverters
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):余國瑞
吳毓恩
林景源
口試委員(外文):Yu, Gwo-Rue
Wu, Yu-En
Lin, Jing-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061597
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:93
中文關鍵詞:三相三線式換流器高低頻互補式換流器漣波電流消除分切合整數位控制
外文關鍵詞:Three-phase Three-wire Inverter,Hybrid Frequency InverterRipple CompensationD-Σ Direct Digital control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:378
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究研製一額定容量10 kVA三相三線高低頻互補換流器,透過設計兩部功率與頻率不同之換流器,改善輸出電感電流之漣波成份。在系統上分為電力級與控制級,並使用兩顆微控制器晶片RX71M做系統控制。其系統開關會操作在不同的切換頻率,功率調配上設置低頻換流器額定功率為8 kVA且切換頻率為6 kHz,高頻換流器額定功率為2 kVA且切換頻率為48 kHz。透過高低頻的功率與頻率配置,可以達成在高頻高功率系統中硬體元件,被低頻高功率元件與高頻低功率的元件取代,在元件選擇上更彈性。在輸出成效上,可透過漣波補償控制降低輸出端之電流漣波成份,使得LCL濾波器的體積、重量皆可以降低,且透過並聯換流器系統,可以使整體系統的動態響應提升。本系統主要操作於市電併網模式,能將直流鏈之能量輸出至交流端,可依照需求輸出實、虛功,同時確保輸出電壓、電流符合併網型換流器電力品質規範。
在控制法方面,使用分切合整數位控制做為本系統之主要控制法,可以省去繁瑣的abc-dq軸轉換計算過程,同時考量到直流鏈電壓、電感電流、開關切換頻率、濾波電容電壓與電感量的變動,其響應速度快與計算時間短的特性,非常適合應用於本系統的漣波補償功能。
本研究主要貢獻為:(1)實作一部三相三線高低頻互補併網型換流器,透過實測來驗證系統穩定性與確保能夠符合換流器輸出之規範;(2)提出新型電路與控制概念,改善目前因為頻率和功率而面臨的元件選擇問題;(3)推導新的漣波補償公式,並將其應用於模擬和實驗上,驗證漣波補償法之理論可行性。
This research designs and implements a 10 kVA three-phase three-wire hybrid frequency inverter system (HbFIS), and the ripple components of the output inductor current are improved by setting inverters with different power and frequencies. The system configuration can be divided into power stages and control stages, and two microcontroller chips RX71M are used for system control. The system switches operate at different switching frequencies. With power distribution, the rated power of the low-frequency inverter is 8 kVA and the switching frequency is 6 kHz, and the rated power of the high-frequency inverter is 2 kVA and the switching frequency is 48 kHz. Through the power and frequency configuration on different inverters, the hardware components at high-frequency and high-power systems can be replaced by low-frequency high-power components and high-frequency low-power components, and the selection of components is more flexible. In output performance, the ripple-compensation method can be used for reducing the ripple components on grid side, so that the of volume and weight of the LCL filter can be reduced. Dynamic response can be improved by the parallel inverters. The system operates on grid-connected mode, which can deliver the energy from dc side to the ac side, and can adjust the proportion of real and reactive power according to the requirement, ensuring that the output voltage and current can accomplish power quality specifications of the grid-connected inverter.
Regarding the control method, D-Σ direct digital control considers the variations of ac-side voltage and current, which make ripple-compensation algorithm convenient and simple to apply to this control method, and it can omit the complicated calculation process from abc to dq domain. The control-law characteristics of fast response and short calculation time are extremely suitable for the ripple-current-compensation algorithm.
The major contributions of this research include: (1) Implement a three-phase three-wire hybrid frequency grid-connected inverter, verify system stability and ensure that it can achieve power quality specifications of the grid-connected inverter; (2) propose a new type of inverter, circuit and control concepts, and improve hardware component selection problems; (3) derive a new ripple-compensation formula, and apply it on simulation and experiment to verify the feasibility of the ripple-compensation method.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第 一 章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-2-1 單模組換流器 2
1-2-2 多模組換流器 5
1-2-3 換流器控制法 7
1-3 論文大綱 10
第 二 章 系統架構與控制策略 11
2-1 高低頻換流器系統架構 11
2-2 低頻換流器解耦合分切合整直接數位控制 12
2-3 高頻換流器解耦合分切合整直接數位控制 16
第 三 章 換流器周邊電路 23
3-1 輔助電源 23
3-2 開關驅動電路 25
3-2-1 緩衝器SN74LVC244 25
3-2-2 開關驅動電源 26
3-2-3 開關驅動電路 27
3-3 電壓/電流回授電路 28
3-3-1 直流鏈電壓 28
3-3-2 電網電壓、濾波電容電壓 29
3-3-3 電感電流 31
3-4 保護電路 33
3-4-1 過壓/過流保護 34
3-4-2 電壓箝位保護 35
3-4-3 輔助電源偵測 35
3-4-4 電網斷開 36
3-4-5 緊急開關 37
第 四 章 系統韌體架構與控制流程 38
4-1 微控制器Renesas RX71M簡介 38
4-2 載波同步機制 44
4-3 低頻換流器 46
4-3-1 主程式流程規劃 46
4-3-2 中斷副程式控制流程規劃 48
4-4 高頻換流器 50
4-4-1 主程式流程規劃 50
4-4-2 中斷副程式控制流程規劃 51
4-5 高低頻換流器並聯流程規劃 53
第 五 章 實務考量與損耗分析 55
5-1 實務考量 55
5-1-1 電感值變化 55
5-1-2 類比/數位取樣延遲 57
5-1-3 怠滯時間補償 59
5-1-4 高低頻直流鏈端電源改善 60
5-2 損耗分析 62
5-2-1 電感損耗 62
5-2-2 功率開關損耗 67
5-2-3 總損耗與效率 69
第 六 章 模擬與實測結果 70
6-1 系統規格與LCL濾波器參數 70
6-2 Matlab/Simulink模擬 71
6-3 模擬與實測波形 73
6-3-1 純實功輸出 73
6-3-2 虛功補償–超前功因 80
6-3-3 虛功補償–落後功因 85
第 七 章 結論與未來研究方向 89
7-1 結論 89
7-2 未來研究方向 90
參考文獻 91

[1] O. Vodyakho and C. C. Mi,“Three-Level Inverter-Based Shunt Active Power Filter in Three-Phase Three-Wire and Four-Wire Systems,”IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1350-1563, May 2009.
[2] R. Zhang, V. H. Prasad, D. Boroyevich, and F. C. Lee, “Three-Dimensional Space Vector Modulation for Four-Leg Voltage-Source Converters,”IEEE Transactions on Power Electronics, vol. 17, no. 3, pp. 314-326, May 2002.
[3] H. Xiong and C. Wu, “Control Strategy of Three-Phase Four-Wire Three-Leg Inverters,” 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1-4, June 2019
[4] R. Zhang et al, “A Three-phase Inverter with A Neutral Leg with Space Vector Modulation,” Proceedings of APEC 97 - Applied Power Electronics Conference, pp. 1-7, February 1997.
[5] X. Lin, S. Gao, J. Li, H. Lei, and Y. Kang, “A New Control Strategy to Balance Neutral-Point Voltage in Three-Level NPC Inverter,” 8th International Conference on Power Electronics - ECCE Asia, pp. 1-5, June 2011.
[6] J. Rodríguez, J. S. Lai and F. Z. Peng, “Multilevel Inverters: A Survey of Topologies, Controls, and Applications,” IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp. 724-738, Aug 2002.
[7] M. Varun, K. Shukla, R. Maheshwari, A. K. Jain,“A New Hybrid PWM for Two Parallel Connected Interleaved Two-Level Inverter to Reduce Output Current Ripple,”2017 IEEE 7th International Conference on Power and Energy Systems (ICPES), pp. 1-6, November 2017.
[8] K. Shukla, V. Malyala and R. Maheshwari, “A Novel Carrier-Based Hybrid PWM Technique for Minimization of Line Current Ripple in Two Parallel Interleaved Two-Level VSIs,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 1908-1918, August 2017.
[9] Q. He and S. D. Garveg, “To Automatically Select PID Structures for Various Electrical Drive Applications,” IEE Colloquium on Getting the Best Our of PID in Machine Control, pp. 1-4, October 1996.
[10] S. K. Valluru et al, “Design of Multi-Loop L-PID and NL-PID Controllers: An Experimental Validation,” 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), pp. 1-4, October 2018.
[11] K. Zhang, Y. Kang, J. Xiong, and J. Chen,“Direct Repetitive Control of SPWM Inverter for UPS Purpose,”IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 784-792, May 2003.
[12] J. Kang, S. Yang, W. Xia, and S. Wang, “An Improved Deadbeat Control Strategy for Photovoltaic Grid-Connected Inverter Based on Unipolar & Frequency Multiplication SPWM and Its Implementation,” 2014 International Power Electronics and Application Conference and Exposition, pp. 1-4, November 2014.
[13] T. L. Pan and Z. C. Ji, “On Fuzzy Controller of Three-level DC/DC Inverter,” 2007 Chinese Control Conference, pp.1-3, July 2007.
[14] G. R. Yu and J. S. Wei, “Fuzzy Control of a Bi-directional Inverter with Nonlinear Inductance for DC Microgrids,” 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 1-5, June 2011.
[15]T.-F. Wu, Y.-H. Huang, Y.-T. Liu, and M. Misra, “Decoupled Direct Digital Control with D-Σ Process and Average Common-Mode Voltage Model for 3Φ3W LCL Converters,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1-6, March 2019.
[16] C. A. Rabbath and N. Léchevin, “Discrete-Time ControlSystem Design with Applications,” New York, NY: Springer-Verlag New York, June 2014.
[17] C. L. Phillips, H. T. Nagle and A. Chakrabortty,“Digital Control System
Analysis & Design,” Harlow Essex England: Pearson Education Limited, 2015.
[18]T.-F. Wu, T. Sakavov and Y.-H. Huang, “Current Ripple Compensation Algorithm for Paralleled Three-Phase Three-Wire Hybrid Frequency Inverter Systems,” 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1-5, July 2021.
[19] D. Jiang, and F. Wang,“Current-Ripple Prediction for Three-Phase
PWM Converters,”IEEE Transactions on Industry Applications, vol. 50, no. 1, pp. 531-538, June 2013.
[20]D. Jiang and F. Wang, "Variable Switching Frequency PWM for Three-Phase Converters Based on Current Ripple Prediction," IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 4951-4961, Nov. 2013.
[21]Mean Well, “RS-35 series,” February 2022.
[22]Mean Well, “WDR-60 series,” March 2022.
[23]Texas Instruments,“SN74LVC244A Octal Buffer or Driver With 3-State Outputs,”October 2020.
[24] Infineon, “1EDI EiceDRIVER™ Compact - Separate Output Variant for MOSFET,” Rev. 2.0, July 2015.
[25] LEM, “Current Transducer LA 100-P,” January 2016.
[26] Renesas Technology, “RX62T Group,” Rev.1.00, October 2010.
[27] Renesas Technology, “RX71M Group,” Rev.1.10, October 2010.
[28] Chang Sung Corporation, “Magnetic Powder Cores,” October 2015.
[29] Chroma Technology, “ MODEL 62000D SERIES,”
[30] JD Auspice Corporation, “ AWG尺寸對照表”
[31]CREE, “ C3M0016120K Silicon Carbide Power MOSFET,” April 2019.
(此全文20270802後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *