帳號:guest(3.145.94.125)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉浩平
作者(外文):Yeh, Hao-Ping
論文名稱(中文):風力永磁同步發電機為主直流微電網之開發
論文名稱(外文):DEVELOPMENT OF A WIND PERMANENT-MAGNET SYNCHRONOUS GENERATOR BASED DC MICROGRID
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):劉添華
陳盛基
口試委員(外文):Liu, Tian-Hua
Chen, Seng-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061596
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:141
中文關鍵詞:風力發電機風渦輪機模擬器內置磁石式永磁同步馬達內置磁石式永磁同步發電機直流微電網維也納切換式整流器最大功率追蹤電池微電網至電網電網至微電網
外文關鍵詞:wind generatorwind turbine emulatorIPMSMIPMSGDC microgridVienna SMRmaximum power point trackingbatteryG2MM2G
相關次數:
  • 推薦推薦:0
  • 點閱點閱:73
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發一風力內置磁石式永磁同步發電機為主之直流微電網,並從事其聯網操作。其主要含電池儲能系統、傾卸式負載、以及雙向併網轉換器。首先,建構一內置磁石式永磁同步馬達驅動系統之原動機模擬器,其可操作於速度模式作為傳統發電機之渦輪機。另一方面,在轉矩模式下驅控,可形成一忠實的風渦輪機模擬器。風渦輪機於不同風速下可產生所設計之轉矩-速度及功率-速度曲線,以利風力發電研究。
接著,開發一後接三相T型維也納切換式整流器之內置磁石式永磁同步發電機,作為風渦輪機之測試負載。經由關鍵事務之處理以獲得良好發電特性: (i) 內置磁石式永磁同步發電機換相移位機構之適當設計; (ii) 維也納切換式整流器採用單週期控制,無需輸入電壓感測與乘法運算即可獲得良好之功率因數與控制性能; (iii) 量化與強健之直流輸出電壓控制; (iv) 雙極性切換式整流器之輸出電壓平衡控制。在傳統定速發電下,所開發之永磁同步發電機可建立調節良好與強健之直流鏈電壓。至於風力發電機,採用擾動觀察法對風渦輪機模擬器驅動之發電機進行最大功率追踪控制以擷取最大風能。最後,並探究所開發維也納切換式整流器之故障容錯操作。
微電網之聯網雙向功率潮流操控以所建雙向併網轉換器達成。當微電網能量充足時,可向電網提供實功和/或虛功功率。反之,當微電網能量不足時,電網可為微電網提供能量支撐。眾所周知,微電網所收集之再生能源通常係不可預測且波動的,因故需合適之儲能緩衝器以提高其供電可靠性。本論文開發並評估一具雙向升/降壓直流/直流介面轉換器之電池儲能系統。所建電力轉換器之控制機構均以數位方式實現,所有功率級之操作特性均以一些測量結果評估之。
This thesis develops a wind interior permanent-magnet synchronous generator (IPMSG) based DC microgrid and performs its grid-connected operations. It mainly consists of a battery energy storage system (BESS), a dump load and a bidirectional grid-connected inverter. First, an interior permanent-magnet synchronous motor (IPMSM) driven prime mover emulator is developed. It can be operated in speed mode to drive the conventional generator. On the other hand, a faithful wind turbine emulator (WTE) is yielded by controlling the motor drive in torque mode. The torque-speed and power-speed curves of the designed wind turbine under different speeds can be generated for facilitating the wind generating studies.
Next, a wind IPMSG followed by a three-phase T-type Vienna switch-mode rectifier (SMR) is developed as a test load for the WTE. Good power generation characteristics are obtained through treating the critical affairs: (i) proper design of commutation scheme for IPMSG; (ii) The one-cycle control (OCC) scheme for Vienna SMR is employed to have satisfactory power factor control performance without input voltage sensing and multiplying process; (iii) quantitative and robust DC output voltage controls; and (iv) voltage balancing control for the bipolar SMR output voltages. Under the traditional constant-speed power generation, the IPMSG can establish well-regulated and robust DC-bus voltage. As to the wind IPMSG, the perturb and observe (P&O) method is applied to engage in the maximum power tracking control of the generator driven by the WTE. Finally, the fault-tolerant operation of the developed Vienna SMR is explored.
The bidirectional grid-connected operation of the established microgrid is achieved via a bidirectional inverter. When the energy of the microgrid is abundant, it can provide real power and/or reactive power to the utility grid. Conversely, as the energy of the microgrid is insufficient, the utility grid can provide energy support for the microgrid. As generally recognized, the harvested renewable energies in a microgrid are usually unpredictable and fluctuated. Thus, the suited energy storage buffer is required to improve its power supplying reliability. A BESS with bidirectional boost/buck DC/DC interface converter is developed and evaluated. The control schemes of all the established power converters are realized digitally. And the operating characteristics of all power stages are evaluated by some measured results.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES viii
LIST OF TABLES xvi
LIST OF SYMBOLS xvii
LIST OF ABBREVIATION xxv
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 1
A. Microgrids 1
B. Wind Generator Systems 2
C. Permanent-Magnet Synchronous Motor Drives 2
D. Switch-mode Rectifiers 3
E. PWM Inverters 3
F. Energy Storage Systems and DC/DC Converters 4
1.3 Contribution of this Dissertation 4
1.4 Organizations of this Thesis 5
CHAPTER 2 OVERVIEW OF WIND GENERATORS AND THE EMPOLYED ELECTRIC MACHINES 7
2.1 Introduction 7
2.2 Microgrid Systems 7
2.3 Wind Generator System 8
A. Structure of Wind Turbine 8
B. Characteristics of Wind Turbine 10
C. Power Characteristics and Maximum Power Point Tracking 13
D. Typical Wind Generator System 16
2.4 Permanent Magnet Synchronous Machines 17
A. Motor Structures 17
B. Governing Equations 19
C. Measurement of Motor Parameters 22
D. Some Key Issues 25
2.5 Energy Storage System 26
A. Battery 27
B. Super-Capacitor 27
2.6 Interface Converters 27
A. DC-DC Converters 27
B. Three-phase SMRs 28
CHAPTER 3 IPMSM DRIVEN TURBINE EMULATOR 31
3.1 Introduction 31
3.2 The Developed IPMSM Motor Drive 31
A. System Configuration 31
B. The Employed IPMSM and IPMSG 31
C. Voltage-source Inverter 32
3.3 Digital Control Environment 33
A. Digital Signal Processor 33
B. Field Programmable Gate Array 34
C. Digital-to-analog Converter 35
D. Sensing Circuits 36
3.4 Control Schemes 37
A. Current Controller 37
B. Speed Controller 38
3.5 Experimental Evaluation 41
A. Steady-state Characteristic 41
B. Current and Speed Responses 42
3.6 The Designed Turbine Emulator 44
A. System Configuration 44
B. Torque Controller 44
C. Modeling of Wind Turbine Characteristics 44
D. Experimental Evaluation for the Developed Wind Turbine Emulator 49
CHAPTER 4 WIND IPMSG WITH VIENNA SMR POWERED DC MICROGRID 51
4.1 Introduction 51
4.2 The Developed Wind IPMSG System 51
A. System Configuration 51
B. Circuit Operation 52
C. Equivalent Circuit Analysis 56
D. Power Circuit Components Design 58
E. Power Devices 60
F. Sensing Circuits 60
4.3 Control Scheme 61
A. Current Control Scheme 61
B. Voltage Control Scheme 62
C. Neutral Point Voltage Balancing Control Scheme 66
4.4 Experimental Evaluation for Fixed-voltage Generator 66
A. Steady-state Characteristic 66
B. Dynamic Response 67
C. Neutral Point Voltage Balancing Control 68
D. Efficiency Assessment 69
4.5 Maximum Power Point Tracking Control of the Wind Turbine Emulator Driven IPMSG 71
A. MPPT Control Algorithms 71
B. Control Scheme 71
C. Experimental Evaluation 73
4.6 Fault-tolerant Operation 76
A. IPMSG with Single-phase AC Input 76
B. Circuit Operation 77
C. Power Circuit Components and Control Scheme 78
D. Measured Results 79
CHAPTER 5 WIND GENERATOR BASED MICROGRID AND ITS GRID-CONNECTED OPERATIONS 82
5.1 Introduction 82
5.2 Bidirectional Grid-connected Inverter 83
A. Circuit Operation 83
B. Power Components Design 85
5.3 M2G Mode 87
A. System Configuration 87
B. Current Control Modeling 88
C. Phase Locked Loop Mechanism 91
D. Experimental Evaluation for the Inverter with DC Source Powered DC bus 93
E. Experimental Evaluation for the Inverter with IPMSG Powered DC bus 95
5.4 G2M Mode 98
A. System Configuration 98
B. Voltage Control Modeling 99
C. Experimental Evaluation 101
D. Dynamic Analyze 102
5.5 Dump Load 109
5.6 Establishment of the Battery Energy Storage System 110
A. System Configuration 110
B. Power Components Design 113
C. Control Schemes 113
D. Experimental Evaluation 120
CHAPTER 6 WHOLE DC MICROGRID SYSTEM PERFORMANCE ASSESSMENT 124
6.1 Introduction 124
6.2 System Configuration of the Established DC Microgrid 124
A. System Components 124
B. Control Schemes 125
6.3 DC Microgrid Supported by Dual Sources 128
A. Wind IPMSG Powered DC Microgrid with Battery Energy Support 128
B. Wind IPMSG Powered DC Microgrid with Grid-connected Inverter Support 128
6.4 Wind Energy Shortage Scenarios for DC Microgrid 129
A. Wind IPMSG + BESS 129
B. Wind IPMSG + Grid-connected Inverter 129
C. Wind IPMSG + BESS + Grid-connected Inverter 131
CHAPTER 7 CONCLUSION 132
REFERENCES 133

A. Microgrids
[1] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017.
[2] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
[3] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - a general approach toward standardi- zation,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2011.
[4] V. Nasirian, S. Moayedi, A. Davoudi, and F. L. Lewis, “Distributed cooperative control of DC microgrids,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2288-2303, 2015.
[5] D. Kumar, F. Zare, and A. Ghosh, “DC microgrid technology: system architectures AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects, IEEE Access, vol. 5, pp. 12230-12256, 2017.
[6] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids - part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528 3549, 2016.
[7] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids - part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
[8] S. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” in Proc. IEEE IECON, pp. 3034-3039, 2010.
[9] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution, ” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
B. Wind Generator Systems
[10] “Global wind report 2022,” Available: https:/gwec.net/global-wind-report-2022, April, 2022.
[11] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009.
[12] F. Blaabjerg and K. Ma, “Wind energy systems,” in Proc. IEEE IRE, vol. 105, no. 11, pp. 2116-2131, 2017.
[13] N. A. Orlando, M. Liserre, R. A. Mastromauro, and A. Dell'Aquila, “A survey of control issues in PMSG-based small wind-turbine systems,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529-539, 2013.
[14] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: state-of-the-art and emerging technologies,” in Proc. IEEE, vol. 103, no. 5, pp. 740-788, May 2015.
[15] F. Blaabjerg, M. Liserre, and K. Ma, “Power electronics converters for wind turbine systems,” IEEE Trans. Ind. Appl, vol. 48, no. 2, pp. 708-719, 2012.
IPMSGs:
[16] C. N. Bhende, S. Mishra, and S. G. Malla, “Permanent magnet synchronous generator-based standalone wind energy supply system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011.
[17] H. Karimi-Davijani and O. Ojo, “Optimum control of grid connected interior permanent magnet wind turbine generator,” in Proc. IEEE ECCE, 2012, pp. 3764-3771.
[18] P. Roshanfekr, T. Thiringer, and M. Alatalo, “Performance of two 5 MW permanent magnet wind turbine generators using surface mounted and interior mounted magnets,” in Proc. IEEE ICEM, 2012, pp. 1041-1047.
[19] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015.
[20] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, “Sensorless output maximization control for variable-speed wind generation system using IPMSG,” IEEE Trans. Ind. Appl, vol. 41, no. 1, pp. 60-67, 2005.
Wind turbine emulators:
[21] J. M. Nye, J. G. de la Bat, M. A. Khan, and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM, 2012, pp. 2060-2065.
[22] G. Henz, G. Koch, C. M. Franchi, and H. Pinheiro, “Development of a variable speed wind turbine emulator for research and training,” in Proc. IEEE COBEP, 2013, pp. 737-742.
[23] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES, 2012, pp. 5827-5832.
[24] D. Llano, M. Tatlow, and R. McMahon, “Control algorithm for permanent magnet generators evaluated on a wind turbine emulator test-rig,” in Proc. IET PEMD, 2014, pp. 1-7.
[25] J. Hussain and M. K. Mishra, “An efficient wind speed computation method using sliding mode observers in wind energy conversion system control applications,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 730-739, 2020.
[26] J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, and F. Briz, “Control and emulation of small wind turbines using torque estimators,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4863-4876, 2017.
[27] P. Chen, K. Hu, Y. Lin, and C. Liaw, “Development of a prime mover emulator using a permanent-magnet synchronous motor drive,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6114-6125, 2018.
Maximum power point tracking controls:
[28] J. Hussain and M. K. Mishra, “Adaptive maximum power point tracking control algorithm for wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 31, pp. 697-705, 2016.
[29] M. Heydari and K. Smedley, “Comparison of maximum power point tracking methods for medium to high power wind energy systems,” in Proc. IEEE EPDC, pp. 184-189, 2015.
[30] Z. M. Dalala, Z. U. Zahid, W. S. Yu, and Y. H. Cho, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, 2013.
[31] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, 2005.
[32] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, “High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1010-1021, 2011.
[33] Y. Xia, K. H. Ahmed, and B.W. Williams, “A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609-3620, 2011.
C. Permanent-Magnet Synchronous Motor Drives
Applications:
[34] Q. Shen, N. Sun, G. Zhao, X. Han, and R. Tang, “Design of a permanent magnet synchronous motor and performance analysis for subway,” in Proc. IEEE APPEEC, pp. 1-4 2010.
[35] T. Finken, M. Hombitzer, and K. Hameyer, “Study and comparison of several permanent- magnet excited rotor types regarding their applicability in electric vehicles,” in Proc. IEEE EEPT, pp. 1-7, 2010.
[36] R. Menon, A. H. Kadam, N. A. Azeez, and S. S. Williamson, “A comprehensive survey on permanent magnet synchronous motor drive systems for electric transportation applications,” in Proc. IEEE IES, pp. 6627-6632, 2016.
[37] G. Boztas and O. Aydogmus, “Design of a high-speed PMSM for flywheel systems,” in Proc. IEEE ICPEA, pp. 1-5, 2019.
Motor analyses and designs:
[38] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994.
[39] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013.
[40] M. Onsal, B. Cumhur, Y. Demir, E. Yolacan, and M. Aydin, “Rotor design optimization of a new flux-assisted consequent pole spoke-type permanent magnet torque motor for low-speed applications,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, 2018.
[41] R. Islam, I. Husain, A. Fardoun, and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque tipple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009.
[42] T. Ishikawa, M. Yamada, and N. Kurita, “Design of magnet arrangement in interior permanent synchronous motor by response surface methodology in consideration of torque and vibration,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1290-1293, 2011.
[43] K. Yamazaki, M. Kumagai, T. Ikemi, and S. Ohki, “A novel rotor design of interior permanent magnet synchronous motors to cope with both maximum torque and iron-loss reduction,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2478-2486, 2013.
[44] E. Carraro and N. Bianchi, “Design and comparison of interior permanent magnet synchronous motors with non-uniform airgap and conventional rotor for electric vehicle applications,” IET Electr. Power Appl., vol. 8, no. 6, pp. 240-249, 2014.
Equivalent circuits and dynamic modelings:
[45] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed. Canada: John Wiley and Sons, 2013.
[46] S. Lee, “Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 863-870, 2006.
[47] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe, and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[48] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[49] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011.
Current controls:
[50] M. N. Uddin, T. S. Radwan, G. H. George, and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
[51] M. C. Chou and C. M. Liaw, “Development of robust current 2-DOF controllers for permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[52] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[53] M. Kadjoudj, M. E. H. Benbouzid, C. Ghennai, and D. Diallo, “A robust hybrid current control for permanent-magnet synchronous motor drive,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 109-115, 2004.
[54] T. Türker, U. Buyukkeles, and A. F. Bakan, “A robust predictive current controller for PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3906-3914, 2016.
[55] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, 2007.
[56] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
Speed controls:
[57] A. Sabanovic and F. Bilalovic, “Sliding mode control of AC drives,” IEEE Trans. Ind. Appl., vol. 25, no. 1, pp. 70-75, 1989.
[58] M. N. Uddin, M. A. Abido, and M. A. Rahman, “Development and implementation of a hybrid intelligent controller for interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 68-79, 2004.
[59] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009.
[60] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 1007-1015, 2013.
[61] M. A. Rahman, D.M. Vilathgamuwa, M.N. Uddin, and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 408-416, 2003.
[62] R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849-2858, 2012.
Torque controls:
[63] S. B. Ozturk and H. A. Toliyat, “Direct torque and indirect flux control of brushless DC motor,” IEEE/ASME Trans. Mechatroics, vol. 16, no. 2, pp. 351-360, 2011.
[64] Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2382-2389, 2012.
[65] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3728-3737, 2016.
[66] A. Mora, Á. Orellana, J. Juliet, and R. Cárdenas, “Model predictive torque control for torque ripple compensation in variable-speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016.
[67] Y. Miao, H. Ge, M. Preindl, J. Ye, B. Cheng, and A. Emadi, “MTPA fitting and torque estimation technique based on a new flux-linkage model for interior-permanent-magnet synchronous machines,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5451-5460, 2017.
Commutation shift controls:
[68] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3473-3475, 2006.
[69] J. Fang, W. Li, and H. Li, “Self-compensation of the commutation angle based on DC-Link current for high-speed brushless DC motors with low inductance,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 428-439, 2014.
[70] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, pp. 4493-4504, 2016.
D. Switch-mode Rectifiers
[71] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[72] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[73] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems - part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[74] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[75] M. Liserre, R. Cárdenas, M. Molinas, and J. Rodriguez, “Overview of multi-MW wind turbines and wind parks,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1081-1095, 2011.
[76] J. W. Kolar, U. Drofenik, and P. K. Jain, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (Vienna) rectifier,” in Proc. IEEE PESC, vol. 2, pp. 1329-1336, 1996.
[77] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 456-467, 1997.
[78] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for Vienna-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Ind. Electron., vol. 24, no. 11, pp. 2509-2522, 2009.
[79] L. Hang, B. Li, M. Zhang, Y. Wang, and L. M. Tolbert, “Equivalence of SVM and carrier-based PWM in three-phase/wire/level Vienna rectifier and capability of unbalanced - load control,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 20-28, 2014.
[80] J. Lee and K. Lee, “A novel carrier-based PWM method for Vienna rectifier with a variable power factor,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 3-12, 2016.
[81] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for Vienna-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Ind. Electron., vol. 24, no. 11, pp. 2509-2522, 2009.
[82] S. Yang, J. Park, and K. Lee, “A carrier-based PWM with synchronous switching technique for a vienna rectifier,” in Proc. IEEE PECON, pp. 728-733, 2016.
[83] J. Lee and K. Lee, “Predictive control of Vienna rectifiers for PMSG systems,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2580-2591, 2017.
[84] K. W. Hu and C. M. Liaw, “Establishment of an IPMSG system with Vienna SMR and its applications to microgrids,” in Proc. IEEE IECON, 2013, pp. 1619-1626.
[85] K. M. Smedley and S. Cuk, “One-cycle control of switching converters,” IEEE Trans. Ind. Electron., vol. 10, no. 6, pp. 625-633, 1995.
[86] Y. Li, X. Zha, F. Liu, and L. Bu, “Discrete-time one cycle control of Vienna rectifiers considering the dc-link neutral-point voltage balance,” in Proc. IEEE ECCE, pp. 3011-3018, 2013.
[87] C. Wang, H. Hu, H. Cheng, Z. Zhao, and J. Liu, “Voltage balancing control of cascaded single-phase Vienna converter based on one cycle control with unbalanced loads,” IEEE Access, vol. 8, pp. 95126-95136, 2020.
[88] C. Wang, J. Liu, H. Cheng, Y. Zhuang, and Z. Zhao, “A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation,” Energies, vol. 12, no. 17, p. 3375, 2019.
[89] T. Gao, S. Zhang, S. Zhang, and J. Zhao, “A dynamic model and modified one-cycle control of three-level front-end rectifier for neutral point voltage balance,” IEEE Access, vol. 5, pp. 2000-2010, 2017.
[90] U. Choi, K. Lee, and F. Blaabjerg, “Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 495-508, 2014.
[91] U. Choi, J. Lee, F. Blaabjerg, and K. Lee, “Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7234-7247, 2016.
E. PWM Inverters
[92] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
[93] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 171-180, 1992.
[94] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[95] T. Bruckner and D. G. Holmes, “Optimal pulse-width modulation for three-level inverters,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 82-89, 2005.
[96] D. G. Holmes, “The significance of zero space vector placement for carrier-based PWM schemes,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1122-1129, 1996.
[97] P. T. Cheng, H. C. Lin, and C. C. Hou, “An integrated pulse width modulator/dead-time generator with improved output voltage precision,” in Proc. IEEE IPEC, pp. 804–810, 2005.
[98] S. G. Jeong and M. H. Park, “The analysis and compensation of dead-time effects in PWM inverters,” IEEE Trans. Ind. Electron., vol. 38, no. 2, pp. 108-114, 1991.
[99] T. G. Habetler, “A space vector-based rectifier regulator for AC/DC/AC converters,” IEEE Trans. Power Electron., vol. 8, no. 1, pp. 30-36, Jan. 1993.
[100] T. M. Rowan and R. J. Kerkman, “A New synchronous current regulator and an analysis of current-regulated PWM inverters,” IEEE Trans. Ind. Appl., vol. IA-22, no. 4, pp. 678-690, 1986.
[101] C. Hou and P. Cheng, “Experimental verification of the active front-end converters dynamic model and control designs,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1112-1118, 2011.
[102] V. Blasko and V. Kaura, “A new mathematical model and control of a three-phase AC-DC voltage source converter,” IEEE Trans. Power Electron., vol. 12, no. 1, pp. 116-123, 1997.
[103] Bin Shi, G. Venkataramanan, and N. Sharma, “Design considerations for reactive elements and control parameters for three phase boost rectifiers,” in Proc. IEEE IEMDC, pp. 1757-1764, 2005.
[104] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[105] Y. Chang and Y. Lai, “Parameter tuning method for digital power converter with predictive current-mode control,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2910-2919, 2009.
[106] L. N. Amuda, B. J. Cardoso Filho, S. M. Silva, S. R. Silva, and A. S. A. C. Diniz, “Wide bandwidth single and three-phase PLL structures for grid-tied PV systems,” in Proc. IEEE PVSC, 2000, pp. 1660-16630.
F. Energy Storage Systems, DC/DC Converters
[107] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004.
[108] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[109] E. O. Ogunniyi and H. Pienaar, “Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications,” in Proc. IEEE DUE, pp. 233-239, 2017.
[110] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. Hoff, and O. Leitermann, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. IEEE IRE, vol. 102, no. 6, pp. 1014-1030, 2014.
[111] N. Jabbour and C. Mademlis, “Supercapacitor-based energy recovery system with improved power control and energy management for elevator applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9389-9399, 2017.
[112] S. Gayathri Nair and N. Senroy, “Wind turbine with flywheel for improved power smoothening and LVRT,” in Proc. IEEE PES, pp.1-5, 2013.
[113] L. Zhihao, O. Onar, A. Khaligh, and E. Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” in Proc. IEEE APEC, pp. 591-596, 2009.
[114] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid,” in Proc. IEEE IFEEC, pp. 119-125, 2013.
[115] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, vol. 1, 1994, pp. 381-389.
[116] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, Mar. 2012.
[117] Q. Xu, N. Vafamand, L. Chen, T. Dragičević, L. Xie, and F. Blaabjerg, “Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1205-1221, 2021.
G. Others
[118] S. Heier, Grid Integration of Wind Energy Conversion System, 3nd Ed., John Wiley & Sons, Ltd., New York, 2014.
[119] H. Akagi, E. H. Watanabe, and M. Aredes, “The instantaneous power theory,” in Instant. Power Theory Appl. Power Cond. IEEE, 2007, pp. 41-107.
[120] Badurek, Christopher A. “wind turbine,” Encyclopedia Britannica, 15 Nov. 2015.
[121] P. H. Jhou, “A wind switched-reluctance generator based grid-connected micro-grid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2017.
[122] Y. G. Lin, “Development of a position sensorless PMSM driven wind turbine emulator,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2017.
[123] X. Y. Sun, “Development of a wind PMSG based bipolar DC microgrid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2021.
[124] M. Y. Lin, “Development of switched reluctance motor driven wind permanent-magnet synchronous generator based bipolar DC microgrid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2021.
[125] C. A. Chen, “Development of a wind generating system emulator using motor-generator set,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *