|
A. Microgrids [1] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017. [2] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016. [3] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - a general approach toward standardi- zation,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2011. [4] V. Nasirian, S. Moayedi, A. Davoudi, and F. L. Lewis, “Distributed cooperative control of DC microgrids,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2288-2303, 2015. [5] D. Kumar, F. Zare, and A. Ghosh, “DC microgrid technology: system architectures AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects, IEEE Access, vol. 5, pp. 12230-12256, 2017. [6] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids - part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528 3549, 2016. [7] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids - part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016. [8] S. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” in Proc. IEEE IECON, pp. 3034-3039, 2010. [9] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution, ” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010. B. Wind Generator Systems [10] “Global wind report 2022,” Available: https:/gwec.net/global-wind-report-2022, April, 2022. [11] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009. [12] F. Blaabjerg and K. Ma, “Wind energy systems,” in Proc. IEEE IRE, vol. 105, no. 11, pp. 2116-2131, 2017. [13] N. A. Orlando, M. Liserre, R. A. Mastromauro, and A. Dell'Aquila, “A survey of control issues in PMSG-based small wind-turbine systems,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 529-539, 2013. [14] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: state-of-the-art and emerging technologies,” in Proc. IEEE, vol. 103, no. 5, pp. 740-788, May 2015. [15] F. Blaabjerg, M. Liserre, and K. Ma, “Power electronics converters for wind turbine systems,” IEEE Trans. Ind. Appl, vol. 48, no. 2, pp. 708-719, 2012. IPMSGs: [16] C. N. Bhende, S. Mishra, and S. G. Malla, “Permanent magnet synchronous generator-based standalone wind energy supply system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011. [17] H. Karimi-Davijani and O. Ojo, “Optimum control of grid connected interior permanent magnet wind turbine generator,” in Proc. IEEE ECCE, 2012, pp. 3764-3771. [18] P. Roshanfekr, T. Thiringer, and M. Alatalo, “Performance of two 5 MW permanent magnet wind turbine generators using surface mounted and interior mounted magnets,” in Proc. IEEE ICEM, 2012, pp. 1041-1047. [19] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015. [20] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, “Sensorless output maximization control for variable-speed wind generation system using IPMSG,” IEEE Trans. Ind. Appl, vol. 41, no. 1, pp. 60-67, 2005. Wind turbine emulators: [21] J. M. Nye, J. G. de la Bat, M. A. Khan, and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM, 2012, pp. 2060-2065. [22] G. Henz, G. Koch, C. M. Franchi, and H. Pinheiro, “Development of a variable speed wind turbine emulator for research and training,” in Proc. IEEE COBEP, 2013, pp. 737-742. [23] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES, 2012, pp. 5827-5832. [24] D. Llano, M. Tatlow, and R. McMahon, “Control algorithm for permanent magnet generators evaluated on a wind turbine emulator test-rig,” in Proc. IET PEMD, 2014, pp. 1-7. [25] J. Hussain and M. K. Mishra, “An efficient wind speed computation method using sliding mode observers in wind energy conversion system control applications,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 730-739, 2020. [26] J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, and F. Briz, “Control and emulation of small wind turbines using torque estimators,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4863-4876, 2017. [27] P. Chen, K. Hu, Y. Lin, and C. Liaw, “Development of a prime mover emulator using a permanent-magnet synchronous motor drive,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6114-6125, 2018. Maximum power point tracking controls: [28] J. Hussain and M. K. Mishra, “Adaptive maximum power point tracking control algorithm for wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 31, pp. 697-705, 2016. [29] M. Heydari and K. Smedley, “Comparison of maximum power point tracking methods for medium to high power wind energy systems,” in Proc. IEEE EPDC, pp. 184-189, 2015. [30] Z. M. Dalala, Z. U. Zahid, W. S. Yu, and Y. H. Cho, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, 2013. [31] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, 2005. [32] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, “High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1010-1021, 2011. [33] Y. Xia, K. H. Ahmed, and B.W. Williams, “A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609-3620, 2011. C. Permanent-Magnet Synchronous Motor Drives Applications: [34] Q. Shen, N. Sun, G. Zhao, X. Han, and R. Tang, “Design of a permanent magnet synchronous motor and performance analysis for subway,” in Proc. IEEE APPEEC, pp. 1-4 2010. [35] T. Finken, M. Hombitzer, and K. Hameyer, “Study and comparison of several permanent- magnet excited rotor types regarding their applicability in electric vehicles,” in Proc. IEEE EEPT, pp. 1-7, 2010. [36] R. Menon, A. H. Kadam, N. A. Azeez, and S. S. Williamson, “A comprehensive survey on permanent magnet synchronous motor drive systems for electric transportation applications,” in Proc. IEEE IES, pp. 6627-6632, 2016. [37] G. Boztas and O. Aydogmus, “Design of a high-speed PMSM for flywheel systems,” in Proc. IEEE ICPEA, pp. 1-5, 2019. Motor analyses and designs: [38] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994. [39] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013. [40] M. Onsal, B. Cumhur, Y. Demir, E. Yolacan, and M. Aydin, “Rotor design optimization of a new flux-assisted consequent pole spoke-type permanent magnet torque motor for low-speed applications,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, 2018. [41] R. Islam, I. Husain, A. Fardoun, and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque tipple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009. [42] T. Ishikawa, M. Yamada, and N. Kurita, “Design of magnet arrangement in interior permanent synchronous motor by response surface methodology in consideration of torque and vibration,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1290-1293, 2011. [43] K. Yamazaki, M. Kumagai, T. Ikemi, and S. Ohki, “A novel rotor design of interior permanent magnet synchronous motors to cope with both maximum torque and iron-loss reduction,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2478-2486, 2013. [44] E. Carraro and N. Bianchi, “Design and comparison of interior permanent magnet synchronous motors with non-uniform airgap and conventional rotor for electric vehicle applications,” IET Electr. Power Appl., vol. 8, no. 6, pp. 240-249, 2014. Equivalent circuits and dynamic modelings: [45] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed. Canada: John Wiley and Sons, 2013. [46] S. Lee, “Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 863-870, 2006. [47] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe, and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003. [48] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051. [49] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011. Current controls: [50] M. N. Uddin, T. S. Radwan, G. H. George, and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000. [51] M. C. Chou and C. M. Liaw, “Development of robust current 2-DOF controllers for permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009. [52] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001. [53] M. Kadjoudj, M. E. H. Benbouzid, C. Ghennai, and D. Diallo, “A robust hybrid current control for permanent-magnet synchronous motor drive,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 109-115, 2004. [54] T. Türker, U. Buyukkeles, and A. F. Bakan, “A robust predictive current controller for PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3906-3914, 2016. [55] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, 2007. [56] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009. Speed controls: [57] A. Sabanovic and F. Bilalovic, “Sliding mode control of AC drives,” IEEE Trans. Ind. Appl., vol. 25, no. 1, pp. 70-75, 1989. [58] M. N. Uddin, M. A. Abido, and M. A. Rahman, “Development and implementation of a hybrid intelligent controller for interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 68-79, 2004. [59] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009. [60] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 1007-1015, 2013. [61] M. A. Rahman, D.M. Vilathgamuwa, M.N. Uddin, and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 408-416, 2003. [62] R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849-2858, 2012. Torque controls: [63] S. B. Ozturk and H. A. Toliyat, “Direct torque and indirect flux control of brushless DC motor,” IEEE/ASME Trans. Mechatroics, vol. 16, no. 2, pp. 351-360, 2011. [64] Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2382-2389, 2012. [65] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3728-3737, 2016. [66] A. Mora, Á. Orellana, J. Juliet, and R. Cárdenas, “Model predictive torque control for torque ripple compensation in variable-speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016. [67] Y. Miao, H. Ge, M. Preindl, J. Ye, B. Cheng, and A. Emadi, “MTPA fitting and torque estimation technique based on a new flux-linkage model for interior-permanent-magnet synchronous machines,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5451-5460, 2017. Commutation shift controls: [68] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3473-3475, 2006. [69] J. Fang, W. Li, and H. Li, “Self-compensation of the commutation angle based on DC-Link current for high-speed brushless DC motors with low inductance,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 428-439, 2014. [70] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, pp. 4493-4504, 2016. D. Switch-mode Rectifiers [71] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [72] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013. [73] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems - part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014. [74] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008. [75] M. Liserre, R. Cárdenas, M. Molinas, and J. Rodriguez, “Overview of multi-MW wind turbines and wind parks,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1081-1095, 2011. [76] J. W. Kolar, U. Drofenik, and P. K. Jain, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (Vienna) rectifier,” in Proc. IEEE PESC, vol. 2, pp. 1329-1336, 1996. [77] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 456-467, 1997. [78] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for Vienna-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Ind. Electron., vol. 24, no. 11, pp. 2509-2522, 2009. [79] L. Hang, B. Li, M. Zhang, Y. Wang, and L. M. Tolbert, “Equivalence of SVM and carrier-based PWM in three-phase/wire/level Vienna rectifier and capability of unbalanced - load control,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 20-28, 2014. [80] J. Lee and K. Lee, “A novel carrier-based PWM method for Vienna rectifier with a variable power factor,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 3-12, 2016. [81] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for Vienna-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Ind. Electron., vol. 24, no. 11, pp. 2509-2522, 2009. [82] S. Yang, J. Park, and K. Lee, “A carrier-based PWM with synchronous switching technique for a vienna rectifier,” in Proc. IEEE PECON, pp. 728-733, 2016. [83] J. Lee and K. Lee, “Predictive control of Vienna rectifiers for PMSG systems,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2580-2591, 2017. [84] K. W. Hu and C. M. Liaw, “Establishment of an IPMSG system with Vienna SMR and its applications to microgrids,” in Proc. IEEE IECON, 2013, pp. 1619-1626. [85] K. M. Smedley and S. Cuk, “One-cycle control of switching converters,” IEEE Trans. Ind. Electron., vol. 10, no. 6, pp. 625-633, 1995. [86] Y. Li, X. Zha, F. Liu, and L. Bu, “Discrete-time one cycle control of Vienna rectifiers considering the dc-link neutral-point voltage balance,” in Proc. IEEE ECCE, pp. 3011-3018, 2013. [87] C. Wang, H. Hu, H. Cheng, Z. Zhao, and J. Liu, “Voltage balancing control of cascaded single-phase Vienna converter based on one cycle control with unbalanced loads,” IEEE Access, vol. 8, pp. 95126-95136, 2020. [88] C. Wang, J. Liu, H. Cheng, Y. Zhuang, and Z. Zhao, “A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation,” Energies, vol. 12, no. 17, p. 3375, 2019. [89] T. Gao, S. Zhang, S. Zhang, and J. Zhao, “A dynamic model and modified one-cycle control of three-level front-end rectifier for neutral point voltage balance,” IEEE Access, vol. 5, pp. 2000-2010, 2017. [90] U. Choi, K. Lee, and F. Blaabjerg, “Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 495-508, 2014. [91] U. Choi, J. Lee, F. Blaabjerg, and K. Lee, “Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7234-7247, 2016. E. PWM Inverters [92] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003. [93] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 171-180, 1992. [94] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999. [95] T. Bruckner and D. G. Holmes, “Optimal pulse-width modulation for three-level inverters,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 82-89, 2005. [96] D. G. Holmes, “The significance of zero space vector placement for carrier-based PWM schemes,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1122-1129, 1996. [97] P. T. Cheng, H. C. Lin, and C. C. Hou, “An integrated pulse width modulator/dead-time generator with improved output voltage precision,” in Proc. IEEE IPEC, pp. 804–810, 2005. [98] S. G. Jeong and M. H. Park, “The analysis and compensation of dead-time effects in PWM inverters,” IEEE Trans. Ind. Electron., vol. 38, no. 2, pp. 108-114, 1991. [99] T. G. Habetler, “A space vector-based rectifier regulator for AC/DC/AC converters,” IEEE Trans. Power Electron., vol. 8, no. 1, pp. 30-36, Jan. 1993. [100] T. M. Rowan and R. J. Kerkman, “A New synchronous current regulator and an analysis of current-regulated PWM inverters,” IEEE Trans. Ind. Appl., vol. IA-22, no. 4, pp. 678-690, 1986. [101] C. Hou and P. Cheng, “Experimental verification of the active front-end converters dynamic model and control designs,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1112-1118, 2011. [102] V. Blasko and V. Kaura, “A new mathematical model and control of a three-phase AC-DC voltage source converter,” IEEE Trans. Power Electron., vol. 12, no. 1, pp. 116-123, 1997. [103] Bin Shi, G. Venkataramanan, and N. Sharma, “Design considerations for reactive elements and control parameters for three phase boost rectifiers,” in Proc. IEEE IEMDC, pp. 1757-1764, 2005. [104] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [105] Y. Chang and Y. Lai, “Parameter tuning method for digital power converter with predictive current-mode control,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2910-2919, 2009. [106] L. N. Amuda, B. J. Cardoso Filho, S. M. Silva, S. R. Silva, and A. S. A. C. Diniz, “Wide bandwidth single and three-phase PLL structures for grid-tied PV systems,” in Proc. IEEE PVSC, 2000, pp. 1660-16630. F. Energy Storage Systems, DC/DC Converters [107] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004. [108] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011. [109] E. O. Ogunniyi and H. Pienaar, “Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications,” in Proc. IEEE DUE, pp. 233-239, 2017. [110] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. Hoff, and O. Leitermann, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. IEEE IRE, vol. 102, no. 6, pp. 1014-1030, 2014. [111] N. Jabbour and C. Mademlis, “Supercapacitor-based energy recovery system with improved power control and energy management for elevator applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9389-9399, 2017. [112] S. Gayathri Nair and N. Senroy, “Wind turbine with flywheel for improved power smoothening and LVRT,” in Proc. IEEE PES, pp.1-5, 2013. [113] L. Zhihao, O. Onar, A. Khaligh, and E. Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” in Proc. IEEE APEC, pp. 591-596, 2009. [114] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid,” in Proc. IEEE IFEEC, pp. 119-125, 2013. [115] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, vol. 1, 1994, pp. 381-389. [116] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, Mar. 2012. [117] Q. Xu, N. Vafamand, L. Chen, T. Dragičević, L. Xie, and F. Blaabjerg, “Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1205-1221, 2021. G. Others [118] S. Heier, Grid Integration of Wind Energy Conversion System, 3nd Ed., John Wiley & Sons, Ltd., New York, 2014. [119] H. Akagi, E. H. Watanabe, and M. Aredes, “The instantaneous power theory,” in Instant. Power Theory Appl. Power Cond. IEEE, 2007, pp. 41-107. [120] Badurek, Christopher A. “wind turbine,” Encyclopedia Britannica, 15 Nov. 2015. [121] P. H. Jhou, “A wind switched-reluctance generator based grid-connected micro-grid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2017. [122] Y. G. Lin, “Development of a position sensorless PMSM driven wind turbine emulator,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2017. [123] X. Y. Sun, “Development of a wind PMSG based bipolar DC microgrid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2021. [124] M. Y. Lin, “Development of switched reluctance motor driven wind permanent-magnet synchronous generator based bipolar DC microgrid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2021. [125] C. A. Chen, “Development of a wind generating system emulator using motor-generator set,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2021.
|