|
A. Microgrids [1] N. Eghtedarpour and E. Farjah, “Power control and management in a hybrid AC/DC microgrid,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1494-1505, May 2014. [2] E. Rodriguez-Diaz, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero, “An overview of low voltage DC distribution systems for residential applications,” in Proc. IEEE ICCE, 2015, pp. 318-322. [3] F. Nejabatkhah and Y. W. Li, “Overview of power management strategies of hybrid AC/DC microgrid,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7072-7089, Dec. 2015. [4] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016. [5] S. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” in Proc. IEEE IECON., 2010, pp. 3034-3039. [6] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, Jan.-Feb. 2017. [7] D. Kumar, F. Zare and A. Ghosh, “DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects,” IEEE Access, vol. 5, pp. 12230-12256, 2017. [8] A. Frances, R. Asensi, Ó. García, R. Prieto, and J. Uceda, “Modeling electronic power converters in smart DC microgrids-an overview,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6274-6287, Nov. 2017. [9] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010. [10] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system with new half-bridge voltage balancer,” in Proc. IEEE ICBEST., 2015, pp. 62-67. [11] Y. Gu, W. Li, and X. He, “Analysis and control of bipolar LVDC grid with DC symmetrical component method,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 685-694, Jan. 2016. [12] S. Rivera, R. Lizana F., S. Kouro, T. Dragičević, and B. Wu, “Bipolar DC power conversion: state-of-the-art and emerging technologies,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1192-1204, April 2021. [13] J. M. Guerrero, P. C. Loh, T. L. Lee, and M. Chandorkar, “Advanced control architectures for intelligent microgrids-part II: power quality, energy storage, and AC/DC microgrids,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1263-1270, Apr. 2013. [14] T. Dragičević, J. M. Guerrero, J. C. Vasquez, and D. Škrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, Feb. 2014. [15] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, Jul. 2016. [16] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 928-948, Sep. 2017. [17] N. Kondrath, “Bidirectional DC-DC converter topologies and control strategies for interfacing energy storage systems in microgrids: An overview,” in Proc. IEEE SEGE., 2017, pp. 341-345. [18] J. Zhou, Y. Xu, H. Sun, Y. Li, and M. Chow, “Distributed power management for networked AC/DC microgrids with unbalanced microgrids,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 1655-1667, Mar. 2020. B. Wind Turbine Emulators [19] H. M. Kojabadi, L. Chang, and T. Boutot, “Development of a novel wind turbine simulator for wind energy conversion systems using an inverter-controlled induction motor,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 547-552, 2004. [20] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES., 2012, pp. 5827-5832. [21] J. M. Nye, J. G. de la Bat, M. A. Khan, and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM., 2012, pp. 2060-2065. [22] G. Henz, G. Koch, C. M. Franchi, and H. Pinheiro, “Development of a variable speed wind turbine emulator for research and training,” in Proc. IEEE COBEP., 2013, pp. 737-742. [23] D. Llano, M. Tatlow, and R. McMahon, “Control algorithm for permanent magnet generators evaluated on a wind turbine emulator test-rig,” in Proc. IET PEMD., 2014, pp. 1-7. [24] J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, and F. Briz, “Control and emulation of small wind turbines using torque estimators,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4863-4876, 2017. [25] J. Hussain and M. K. Mishra, “An efficient wind speed computation method using sliding mode observers in wind energy conversion system control applications,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 730-739, 2020. [26] S. M. R. Kazmi, H. Goto, H. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 29-36, Jan. 2011. [27] Z. M. Dalala, Z. U. Zahid, W. Yu, Y. Cho, and J. S. Lai, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, Sept. 2013. [28] D. Choi, S. Byun, and Y. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, pp. 1-4, Jan. 2014. C. Permanent-Magnet Synchronous Motors [29] S. Lee, “Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 863-870, Dec. 2006. [30] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011. [31] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013. [32] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001. [33] A. Lekshmi, R. Sankaran, and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS., 2008, vol. 1, no. 1, pp. 2876-2881. [34] M. N. Uddin, M. A. Abido, and M. A. Rahman, “Development and implementation of a hybrid intelligent controller for interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 68-79, 2004. [35] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009. [36] T. Tarczewski and L. Grzesiak, “Constrained state feedback speed control of PMSM based on model predictive approach,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3867-3875, 2015. [37] S. Morimoto, Y. Takeda, K. Hatanaka, Y. Tong, and T. Hirasa, “Design and control system of inverter-driven permanent magnet synchronous motors for high torque operation,” IEEE Trans. Ind. Appl., vol. 29, no. 6, pp. 1150-1155, Nov.-Dec. 1993. [38] A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1531-1537, July 2007. [39] A. Mora, A. Orellana, J. Juliet, and R. Cardenas, “Model predictive torque control for torque ripple compensation in variable speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016. [40] F. Aghili, M. Buehler, and J. M. Hollerbach, “Optimal commutation laws in the frequency domain for PM synchronous direct-drive motors,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1056-1064, 2000. [41] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC., 2003, vol. 2, pp. 1045-1051. [42] D. S. Maric, S. Hiti, C. C. Stancu, and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IEEE IECON., 1998, vol. 1, pp. 508-512. [43] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performance in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
D. Switched-reluctance Machines (a) Switched-reluctance Motors [44] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993. [45] P. C. Sen, Principles of electric machines and power electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc.,2014. [46] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transpor. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015. [47] S. Li, S. Zhang, T. G. Habetler, and R. G. Harley, “Modeling, design optimization, and applications of switched reluctance machines—a review,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2660-2681, May/Jun. 2019. [48] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015. [49] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, Mar. 2017. [50] B. Fahimi, A. Emadi, and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004. [51] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009. [52] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 714-722, May/Jun. 2000. [53] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, Sep. 2003. [54] C. Roux and M. M. Morcos, “On the use of a simplified model for switched reluctance motors,” IEEE Trans. Energy Convers., vol. 17, no. 3, pp. 400-405, Sept. 2002. [55] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003. [56] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003. [57] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015. [58] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003. [59] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Elect. Power Appl., vol. 50, no. 6, pp. 3717-3726, Nov./Dec. 2014. [60] X. Li and P. Shamsi, “Model predictive current control of switched reluctance motors with inductance auto-calibration,” IEEE Trans. Elect. Power Appl., vol. 63, no. 6, pp. 3934-3941, Jun. 2016. [61] S. S. Ahmad and G. Narayanan, “Linearized modeling of switched reluctance motor for closed-loop current control,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3146-3158, July-Aug. 2016. [62] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002. [63] H. Hannoun, M. Hilairet, and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010. [64] D. E. Cameron, J. H. Lang, and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992. [65] C. Pollock and Chi-Yao Wu, “Acoustic noise cancellation techniques for switched reluctance drives,” IEEE Trans. Ind. Appl., vol. 33, no. 2, pp. 477-484, March-April 1997. [66] X. D. Xue, K. W. E. Cheng, and S. L. Ho, “Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2076-2090, Sept. 2009. [67] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010. [68] J. Ye, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, March 2015. [69] Y. G. Dessouky, B. W. Williams, and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998. [70] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009. [71] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015. (b) Switched-reluctance Generators [72] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC., 1994, vol. 1, pp. 41-47. [73] R. Cardenas, W. F. Ray, and G. M. Asher, “Switched reluctance generators for wind energy applications,” in Proc. IEEE PESC.,1995, pp. 559-564. [74] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002. [75] A. K. Jain and N. Mohan, “SRM power converter for operation with high de-magnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1224-1231, 2005. [76] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008. [77] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury, and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5. [78] S. Narla, Y. Sozer, and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” IEEE Trans. Ind Appl., vol. 48, no. 5, pp. 1452-1459, Sept.-Oct. 2012. [79] V. Nasirian, S. Kaboli, and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013. [80] D. W. Choi, S. I. Byun, and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, 2014. [81] R. Cardenas, R. Pena, M Perez, J. Clare, G. Asher, and P. Wheeler, “ Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol.51, no.4 pp. 2874-2883, July/Aug. 2015. [82] T. A. D. Santos Barros, P. J. D. Santos Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, 2017. [83] P. J. D. Santos Neto, T. A. D. Santos Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind system,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, 2018. [84] H. Chen, D. Xu, and X. Deng, “Control for power converter of small-scale switched reluctance wind power generator,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3148-3158, April 2021. (c) Converters for Switched-reluctance Machines [85] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991. [86] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998. [87] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002. [88] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate. “SRM converter topologies for EV application: state of the technology,” in Proc. IEEE ISIE., 2017, pp. 861-866. E. Energy Storage Systems [89] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004. [90] A. Kusko and J. DeDad, “Stored energy - short-term and long-term energy storage methods,” IEEE Trans. Ind. Appl. Mag., vol. 13, no. 4, pp. 66-72, 2007. [91] A. Sattar, A. Al-Durra, C. Caruana, M. Debouza, and S. M. Muyeen, “Testing the performance of battery energy storage in a wind energy conversion system,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3196-3206, Mar/June 2020. [92] F. A. Inthamoussou, J. Pegueroles-Queralt, and F. D. Bianchi, “Control of a supercapacitor energy storage system for microgrid applications,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 690-697, 2013. [93] J. Rocabert, R. Capó-Misut, R. S. Muñoz-Aguilar, J. I. Candela, and P. Rodriguez, “Control of energy storage system integrating electrochemical batteries and supercapacitors for grid-connected applications,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1853-1862, Mar./Apr. 2019. [94] S. Kotra and M. K. Mishra, “Design and stability analysis of DC microgrid with hybrid energy storage system,” IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1603-1612, 2019. [95] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu, “Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1074-1085, 2006. [96] F. Diaz-Gonzalez, F. D. Bianchi, A. Sumper, and O. Gomis-Bellmunt, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, 2014. F. Interface Power Converters [97] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003. [98] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011. [99] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system with new half-bridge voltage balancer,” in Proc. IEEE ICBEST., 2015, pp. 62-67. [100] O. Hegazy, J. V. Mierlo, and P. Lataire, “Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4445-4458, Nov. 2012. [101] K. W. Hu, J. C. Wang, T. S. Lin, and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers. vol. 30, no. 1, pp. 273-284, 2015. [102] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017. [103] F. Wang, Z. Lei, X. Xu, and X. Shu, “Topology deduction and analysis of voltage balancers for DC microgrid,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 2, pp. 672–680, 2017. [104] X. Zhang and C. Gong, “Dual-buck half-bridge voltage balancer,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3157-3164, Aug. 2013. [105] A. Ganjavi, H. Ghoreishy, and A. A. Ahmad, “A novel single-input dual-output three-level DC–DC converter,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8101-8111, Oct. 2018. [106] X. Ruan, B. Li, Q. Chen, S. C. Tan, and C. K. Tse, “Fundamental considerations of three-level DC–DC converters: topologies, analyses, and control,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 11, pp. 3733–3743, 2008. G. PWM Inverters [107] S. J. Chiang and C. M. Liaw. “Single-phase three-wire transformerless inveter,” IEE Proc. Electr. Power Appl., vol. 141, No. 4, pp. 197-205, 1994. [108] J. Kim, J. Choi, and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST., 2000, vol. 3, pp. 1659-1664. [109] V. Blasko and V. Kaura, “A new mathematical model and control of a three-phase AC-DC voltage source converter,” IEEE Trans. Power Electron., vol. 12, no. 1, pp. 116-123, Jan. 1997. [110] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004. [111] C. Hou and P. Cheng, “Experimental verification of the active front-end converters dynamic model and control designs,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1112-1118, April 2011. [112] R. Teodorescu, F. Blaabjerg, M. Liserre, and P.C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc. Electr. Power Appl., vol. 153, no. 5, pp. 750-762, 2006. [113] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, October 2011. [114] F. Wang, J. L. Duarte, and M. A. M. Hendrix, “Grid-interfacing converter systems with enhanced voltage quality for microgrid application—concept and implementation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3501-3513, Dec. 2011. [115] J. A. Mueller, M. Rasheduzzaman, and J. W. Kimball, “A model modification process for grid-connected inverters used in islanded microgrids,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 240-250, March 2016. H. Switch-mode Rectifiers (a) Single-phase SMRs [116] R. Martinez and P. N. Enjeti, “A high-performance single-phase rectifier with input power factor correction,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 311-317, March 1996. [117] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003. [118] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003. [119] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008. [120] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, July-Aug. 2011. (b) Three-phase SMRs [121] S. Gadelovitz and A. Kuperman, “Modeling and classical control of unidirectional Vienna rectifiers,” in Proc. IEEE PQ, 2012, pp. 1-4. [122] T. Friedli, M. Hartmann, and J. W Kolar, “The essence of three-phase PFC rectifier systems-part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2013. [123] L. Huber, M. Kumar, and M. M. Jovanović, “Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7123-7137, Dec. 2015. [124] C. Wang, J. Liu, H. Cheng, Y. Zhuang, and Z. Zhao, “A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation,” Energies, vol. 12, no. 17, pp. 3375, Sep. 2019. [125] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (Vienna) rectifier,” in Proc. IEEE PESC., 1996, pp. 1329-1336, vol. 2. I. Others [126] Y. C. Jiang, “Wind switched-reluctance generator based DC microgrid” M.S. thesis, Dept. Electr. Eng., Natl. Tsinghua Univ., Hsinchu, R.O.C., 2021. [127] H. H. Lu, “ Development of a permanent-magnet synchronous motor driven wind turbine emulator and a wind switched-reluctance generator” M.S. thesis, Dept. Electr. Eng., Natl. Tsinghua Univ., Hsinchu, R.O.C., 2020.
|