帳號:guest(3.141.12.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林上評
作者(外文):Lin, Shang-Ping
論文名稱(中文):具插入式能源補充之風力切換式磁阻發電機為主雙極性直流微電網
論文名稱(外文):A WIND SWITCHED-RELUCTANCE GENERATOR BASED BIPOLAR DC MICROGRID WITH PLUG-IN AUXILIARY ENERGY SUPPORT
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):曾萬存
徐國鎧
口試委員(外文):Tseng, Wan-Tsun
Shyu, Kuo-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061595
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:147
中文關鍵詞:風力發電機風渦輪機模擬器切換式磁阻電機最大功率點追蹤雙極性直流微電網電池儲能系統換相移位升壓轉換器負載變頻器比例諧振控制微電網至電網電網至微電網能源支撐
外文關鍵詞:wind generatorwind turbine emulatorSRGMPPTbipolar DC microgridBESScommutation shiftboost converterload inverterPR controlG2MM2Genergy support
相關次數:
  • 推薦推薦:0
  • 點閱點閱:101
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發一具插入式能源補充之風力切換式磁阻發電機為主雙極性直流微電網。首先,建構一變頻表面貼式永磁同步馬達系統作為風渦輪機模擬器。在轉矩模式操作下,所開發風渦輪機之轉矩-速度以及功率-速度特性曲線可忠實產出。在速度模式下,所開發之馬達驅動系統亦可作為傳統發電機之渦輪機。
接著,研製一後接非對稱橋式轉換器之風力切換式磁阻發電機,藉由適當設計之電力電路、感測機構、換相機制、外加激磁源、電壓及電流控制器獲得良好發電特性。對於傳統發電機,輸出電壓可得到良好的穩壓調節特性。至於由風渦輪機所驅動之切換式磁阻發電機,最大功率點追控係應用擾動觀察法實現之。
第三,建構一直流/直流升壓介面轉換器及電壓平衡電路,建立500V之雙極性直流匯流排。經由適當的控制,獲有良好調節及電壓平衡特性之雙極性直流電壓。此外,開發一蓄電池儲能系統,經由一雙向單臂升/降壓直流/直流轉換器連接至微電網之直流匯流排,以提高微電網之供電品質。
在負載側,開發一三相六開關之負載變頻器,其可作為單相三線變頻器或三相三線變頻器。單相三線變頻器可產生單相220V/110V 60Hz電壓源為家用電器供電。控制上採用比例諧振控制,以獲得良好的正弦電壓波形和調節特性。至於三相三線變頻器,用於微電網及市電聯網之雙向操作。在市電對微電網的操作上,可對微電網提供能源支撐。反之,微電網對市電之操作,微電網可對市電提供實功率以及虛功補償。
最後,為了進一步提升微電網的供電可靠性,開發一以三相維也納切換式整流器為主之插入式能源支撐系統。當微電網發生能源短缺時,可將收集之能源供給至微電網。可獲取之電源含直流、單相交流或三相交流。
This thesis develops a wind switched-reluctance generator (SRG) based biploar DC microgrid with plug-in energy support. First, an inverter fed surface-mounted permanent magnet synchronous motor (SPMSM) drive is developed and controlled as a wind turbine emulator (WTE). By operating in torque mode, the designed torque-speed and power-speed curves of the WTE under different wind speeds can be faithfully generated. In speed mode, the developed SPMSM drive can also be served as a conventional generator turbine.
Next, the wind SRG with asymmetric bridge converter is developed. Good generating characteristics are obtained through appropriate designs for power circuit, sensing schemes, commutation mechanism, external excitation source, voltage and current controllers. For the conventional generator, the well-regulated output voltage is established. As to the WTE driven wind SRG, the maximum power point tracking (MPPT) is achieved by applying the perturb and observe (P&O) method.
Third, a DC/DC boost interface converter and a bipolar voltage balancer are constructed to establish a 500V bipolar DC-bus. Through proper control, the bipolar DC voltage with good regulation and voltage balancing characteristics are preserved. Furthermore, to increase the microgrid powering quality, a battery energy storage system (BESS) is developed, which is connected to the microgrid DC-bus through a bidirectional one-leg buck-boost DC/DC converter.
In the load side, a three-phase six-switch (3P6SW) bidirectional load inverter is developed, which can be operated as a single-phase three-wire (1P3W) inverter or a three-phase three-wire (3P3W) inverter. The 1P3W inverter can yield single-phase 220V/110V 60Hz voltage source to power household appliances. Good sinusoidal voltage waveform and regulation characteristics are obtained by adopting the proportional- resonance (PR) control. As to the 3P3W inverter, it is used for conducting the bidirectional microgrid-to-grid/grid-to-microgrid (M2G/G2M) operations. In G2M operation, the microgrid can receive energy support from the grid. Conversely, it can send real power and compensated reactive power to the grid in M2G operation.
Finally, in order to further improve the reliability of the microgrid, a three-phase Vienna switch-mode rectifier based plug-in energy support system is developed. When the microgrid energy shortage occurs, the harvested energy can be used to supply the microgrid. The possible harvested sources can be DC, single-phase AC or three-phase AC.
摘要-----------------------------------------------------------------a
致謝-----------------------------------------------------------------b
目錄-----------------------------------------------------------------c
第一章、簡介----------------------------------------------------------d
第二章、風力發電機及微電網之概述---------------------------------------g
第三章、以永磁同步馬達驅動系統建構之渦輪機模擬器-------------------------h
第四章、傳統及風力切換式磁阻發電機系統之構建-----------------------------i
第五章、以風力切換式磁阻發電機建構之雙極性直流微電網---------------------j
第六章、插入式能源補充系統---------------------------------------------k
第七章、結論----------------------------------------------------------l
附錄: 英文論文--------------------------------------------------------n

ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xvi
LIST OF SYMBOLS xvii
LIST OF ABBREVIATION xxvii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BASIC KONWLEDGE OF WIND GENERATOR AND MICROGRID SYSTEM 6
2.1 Introduction 6
2.2 Microgrids 6
2.3 Wind Generators 8
2.3.1 Wind Turbines 8
2.3.2 Governing Equations of Wind Turbine 10
2.3.3 Typical Wind Generators 12
2.3.4 Maximum Power Point Tracking (MPPT) Control 14
2.4 Turbine Emulators 14
2.5 Permanent Magnet Synchronous Machines 15
2.5.1 Motor Structures 15
2.5.2 Physical Modeling 16
2.5.3 Measurement of Motor Parameters 19
2.6 Switched-Reluctance Machines 22
2.6.1 Motor Structures 22
2.6.2 Governing Equations and Dynamic Modeling 24
2.6.3 SRM Converters 26
2.6.4 Some Key Issues of SRG 28
2.7 Energy Storage Devices 29
2.8 Interface Converters 30
CHAPTER 3 PERMANENT-MAGNET SYNCHRONOUS MOTOR BASED TURBINE EMULATOR 35
3.1 Introduction 35
3.2 Permanent-magnet Synchronous Motor Drive 35
3.2.1 Power Circuit 35
3.2.2 Sensing and Interfacing Circuits 37
3.3 Control Scheme 39
3.3.1 Current-controlled PWM Scheme 39
3.3.2 Speed Control Scheme 40
3.4 Experimental Evaluation of the Developed SPMSM Drive 42
3.4.1 Starting Characteristics 42
3.4.2 Speed Dynamic Response 43
3.5 Turbine Emulator 44
3.5.1 System Configuration 44
3.5.2 Modeling of the Wind Turbine Characteristics 44
3.5.3 Torque Controller 48
3.5.4 Measured Torque-speed and Power-speed Curves 49
CHAPTER 4 CONVENTIONAL AND WIND SWITCHED- RELUCTANCE GENERATORS 51
4.1 Introduction 51
4.2 Switched-Reluctance Generator 51
4.2.1 Governing Equations 51
4.2.2 DC-link Ripple Characteristics 53
4.3 Control Schemes 55
4.4 Performance Evaluation 60
4.5 Revaluation of the SRG system 68
4.6 MPPT Control of the Wind Turbine Emulator Driven SRG 69
4.6.1 Control Scheme 69
4.6.2 MPPT Algorithms 70
4.6.3 Experimental Evaluation 72
4.6.4 Dynamic Characteristics 73
CHAPTER 5 WIND SWITCHED-RELUCTANCE GENERATOR BASED BIPLOAR DC MICROGRID 76
5.1 Introduction 76
5.2 System Configuration of the Developed Microgrid 76
5.3 Two-level Boost Converter and Voltage Balancer 77
5.3.1 Circuit Operation 78
5.3.2 Power Circuit 79
5.3.3 Control Schemes 81
5.3.4 Experimental Results 87
5.4 Battery Energy Storage System 92
5.4.1 Power Circuit 92
5.4.2 Control Scheme 94
5.4.3 Measured Results 99
5.5 Single-phase Three-wire Inverter100
5.5.1 Power Circuit 100
5.5.2 Dynamic Model 101
5.5.3 Control Scheme 104
5.5.4 Measured Results 107
5.6 M2G/G2M Operations via 3P3W Inverter 112
5.6.1 Power Circuit 112
5.6.2 3P3W Inverter in G2M Operation 113
5.6.3 3P3W Inverter in M2G Operation 116
CHAPTER 6 PLUG-IN AUXILIARY ENERGY SUPPORT SYSTEM 119
6.1 Introduction 119
6.2 Plug-in Energy Support Scheme with Three-phase AC input 119
6.2.1 Circuit Operation of Vienna SMR 120
6.2.2 Equivalent Circuit Analysis 123
6.2.3 Power Circuit Component Design 124
6.2.4 Control Schemes 127
6.2.5 Simulation Results 129
6.2.6 Measured Results 129
6.3 Plug-in Energy Support Scheme with Single-phase
AC input 132
6.3.1 Circuit Operation 133
6.3.2 Power Circuit 134
6.3.3 Control Schemes 134
6.3.4 Measured Result 135
6.4 Plug-in Energy Support Scheme with DC Input 136
A. Microgrids
[1] N. Eghtedarpour and E. Farjah, “Power control and management in a hybrid AC/DC microgrid,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1494-1505, May 2014.
[2] E. Rodriguez-Diaz, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero, “An overview of low voltage DC distribution systems for residential applications,” in Proc. IEEE ICCE, 2015, pp. 318-322.
[3] F. Nejabatkhah and Y. W. Li, “Overview of power management strategies of hybrid AC/DC microgrid,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7072-7089, Dec. 2015.
[4] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
[5] S. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” in Proc. IEEE IECON., 2010, pp. 3034-3039.
[6] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, Jan.-Feb. 2017.
[7] D. Kumar, F. Zare and A. Ghosh, “DC microgrid technology: system architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects,” IEEE Access, vol. 5, pp. 12230-12256, 2017.
[8] A. Frances, R. Asensi, Ó. García, R. Prieto, and J. Uceda, “Modeling electronic power converters in smart DC microgrids-an overview,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6274-6287, Nov. 2017.
[9] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
[10] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system with new half-bridge voltage balancer,” in Proc. IEEE ICBEST., 2015, pp. 62-67.
[11] Y. Gu, W. Li, and X. He, “Analysis and control of bipolar LVDC grid with DC symmetrical component method,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 685-694, Jan. 2016.
[12] S. Rivera, R. Lizana F., S. Kouro, T. Dragičević, and B. Wu, “Bipolar DC power conversion: state-of-the-art and emerging technologies,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1192-1204, April 2021.
[13] J. M. Guerrero, P. C. Loh, T. L. Lee, and M. Chandorkar, “Advanced control architectures for intelligent microgrids-part II: power quality, energy storage, and AC/DC microgrids,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1263-1270, Apr. 2013.
[14] T. Dragičević, J. M. Guerrero, J. C. Vasquez, and D. Škrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, Feb. 2014.
[15] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part I: A review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, Jul. 2016.
[16] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 928-948, Sep. 2017.
[17] N. Kondrath, “Bidirectional DC-DC converter topologies and control strategies for interfacing energy storage systems in microgrids: An overview,” in Proc. IEEE SEGE., 2017, pp. 341-345.
[18] J. Zhou, Y. Xu, H. Sun, Y. Li, and M. Chow, “Distributed power management for networked AC/DC microgrids with unbalanced microgrids,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 1655-1667, Mar. 2020.
B. Wind Turbine Emulators
[19] H. M. Kojabadi, L. Chang, and T. Boutot, “Development of a novel wind turbine simulator for wind energy conversion systems using an inverter-controlled induction motor,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 547-552, 2004.
[20] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES., 2012, pp. 5827-5832.
[21] J. M. Nye, J. G. de la Bat, M. A. Khan, and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM., 2012, pp. 2060-2065.
[22] G. Henz, G. Koch, C. M. Franchi, and H. Pinheiro, “Development of a variable speed wind turbine emulator for research and training,” in Proc. IEEE COBEP., 2013, pp. 737-742.
[23] D. Llano, M. Tatlow, and R. McMahon, “Control algorithm for permanent magnet generators evaluated on a wind turbine emulator test-rig,” in Proc. IET PEMD., 2014, pp. 1-7.
[24] J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, and F. Briz, “Control and emulation of small wind turbines using torque estimators,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4863-4876, 2017.
[25] J. Hussain and M. K. Mishra, “An efficient wind speed computation method using sliding mode observers in wind energy conversion system control applications,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 730-739, 2020.
[26] S. M. R. Kazmi, H. Goto, H. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 29-36, Jan. 2011.
[27] Z. M. Dalala, Z. U. Zahid, W. Yu, Y. Cho, and J. S. Lai, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, Sept. 2013.
[28] D. Choi, S. Byun, and Y. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, pp. 1-4, Jan. 2014.
C. Permanent-Magnet Synchronous Motors
[29] S. Lee, “Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 863-870, Dec. 2006.
[30] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011.
[31] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013.
[32] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[33] A. Lekshmi, R. Sankaran, and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS., 2008, vol. 1, no. 1, pp. 2876-2881.
[34] M. N. Uddin, M. A. Abido, and M. A. Rahman, “Development and implementation of a hybrid intelligent controller for interior permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 68-79, 2004.
[35] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
[36] T. Tarczewski and L. Grzesiak, “Constrained state feedback speed control of PMSM based on model predictive approach,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3867-3875, 2015.
[37] S. Morimoto, Y. Takeda, K. Hatanaka, Y. Tong, and T. Hirasa, “Design and control system of inverter-driven permanent magnet synchronous motors for high torque operation,” IEEE Trans. Ind. Appl., vol. 29, no. 6, pp. 1150-1155, Nov.-Dec. 1993.
[38] A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1531-1537, July 2007.
[39] A. Mora, A. Orellana, J. Juliet, and R. Cardenas, “Model predictive torque control for torque ripple compensation in variable speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016.
[40] F. Aghili, M. Buehler, and J. M. Hollerbach, “Optimal commutation laws in the frequency domain for PM synchronous direct-drive motors,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1056-1064, 2000.
[41] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC., 2003, vol. 2, pp. 1045-1051.
[42] D. S. Maric, S. Hiti, C. C. Stancu, and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IEEE IECON., 1998, vol. 1, pp. 508-512.
[43] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performance in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.

D. Switched-reluctance Machines
(a) Switched-reluctance Motors
[44] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[45] P. C. Sen, Principles of electric machines and power electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc.,2014.
[46] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transpor. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[47] S. Li, S. Zhang, T. G. Habetler, and R. G. Harley, “Modeling, design optimization, and applications of switched reluctance machines—a review,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2660-2681, May/Jun. 2019.
[48] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[49] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, Mar. 2017.
[50] B. Fahimi, A. Emadi, and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
[51] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
[52] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 714-722, May/Jun. 2000.
[53] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, Sep. 2003.
[54] C. Roux and M. M. Morcos, “On the use of a simplified model for switched reluctance motors,” IEEE Trans. Energy Convers., vol. 17, no. 3, pp. 400-405, Sept. 2002.
[55] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[56] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[57] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[58] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[59] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Elect. Power Appl., vol. 50, no. 6, pp. 3717-3726, Nov./Dec. 2014.
[60] X. Li and P. Shamsi, “Model predictive current control of switched reluctance motors with inductance auto-calibration,” IEEE Trans. Elect. Power Appl., vol. 63, no. 6, pp. 3934-3941, Jun. 2016.
[61] S. S. Ahmad and G. Narayanan, “Linearized modeling of switched reluctance motor for closed-loop current control,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3146-3158, July-Aug. 2016.
[62] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[63] H. Hannoun, M. Hilairet, and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[64] D. E. Cameron, J. H. Lang, and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
[65] C. Pollock and Chi-Yao Wu, “Acoustic noise cancellation techniques for switched reluctance drives,” IEEE Trans. Ind. Appl., vol. 33, no. 2, pp. 477-484, March-April 1997.
[66] X. D. Xue, K. W. E. Cheng, and S. L. Ho, “Optimization and evaluation of torque-sharing functions for torque ripple minimization in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2076-2090, Sept. 2009.
[67] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
[68] J. Ye, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, March 2015.
[69] Y. G. Dessouky, B. W. Williams, and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[70] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[71] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
(b) Switched-reluctance Generators
[72] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC., 1994, vol. 1, pp. 41-47.
[73] R. Cardenas, W. F. Ray, and G. M. Asher, “Switched reluctance generators for wind energy applications,” in Proc. IEEE PESC.,1995, pp. 559-564.
[74] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
[75] A. K. Jain and N. Mohan, “SRM power converter for operation with high de-magnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1224-1231, 2005.
[76] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[77] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury, and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[78] S. Narla, Y. Sozer, and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” IEEE Trans. Ind Appl., vol. 48, no. 5, pp. 1452-1459, Sept.-Oct. 2012.
[79] V. Nasirian, S. Kaboli, and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013.
[80] D. W. Choi, S. I. Byun, and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, 2014.
[81] R. Cardenas, R. Pena, M Perez, J. Clare, G. Asher, and P. Wheeler, “ Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol.51, no.4 pp. 2874-2883, July/Aug. 2015.
[82] T. A. D. Santos Barros, P. J. D. Santos Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, 2017.
[83] P. J. D. Santos Neto, T. A. D. Santos Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind system,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, 2018.
[84] H. Chen, D. Xu, and X. Deng, “Control for power converter of small-scale switched reluctance wind power generator,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3148-3158, April 2021.
(c) Converters for Switched-reluctance Machines
[85] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[86] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[87] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[88] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate. “SRM converter topologies for EV application: state of the technology,” in Proc. IEEE ISIE., 2017, pp. 861-866.
E. Energy Storage Systems
[89] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004.
[90] A. Kusko and J. DeDad, “Stored energy - short-term and long-term energy storage methods,” IEEE Trans. Ind. Appl. Mag., vol. 13, no. 4, pp. 66-72, 2007.
[91] A. Sattar, A. Al-Durra, C. Caruana, M. Debouza, and S. M. Muyeen, “Testing the performance of battery energy storage in a wind energy conversion system,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3196-3206, Mar/June 2020.
[92] F. A. Inthamoussou, J. Pegueroles-Queralt, and F. D. Bianchi, “Control of a supercapacitor energy storage system for microgrid applications,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 690-697, 2013.
[93] J. Rocabert, R. Capó-Misut, R. S. Muñoz-Aguilar, J. I. Candela, and P. Rodriguez, “Control of energy storage system integrating electrochemical batteries and supercapacitors for grid-connected applications,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1853-1862, Mar./Apr. 2019.
[94] S. Kotra and M. K. Mishra, “Design and stability analysis of DC microgrid with hybrid energy storage system,” IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1603-1612, 2019.
[95] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu, “Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1074-1085, 2006.
[96] F. Diaz-Gonzalez, F. D. Bianchi, A. Sumper, and O. Gomis-Bellmunt, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, 2014.
F. Interface Power Converters
[97] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[98] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[99] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system with new half-bridge voltage balancer,” in Proc. IEEE ICBEST., 2015, pp. 62-67.
[100] O. Hegazy, J. V. Mierlo, and P. Lataire, “Analysis, modeling, and implementation of a multidevice interleaved DC/DC converter for fuel cell hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4445-4458, Nov. 2012.
[101] K. W. Hu, J. C. Wang, T. S. Lin, and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers. vol. 30, no. 1, pp. 273-284, 2015.
[102] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, 2017.
[103] F. Wang, Z. Lei, X. Xu, and X. Shu, “Topology deduction and analysis of voltage balancers for DC microgrid,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 2, pp. 672–680, 2017.
[104] X. Zhang and C. Gong, “Dual-buck half-bridge voltage balancer,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3157-3164, Aug. 2013.
[105] A. Ganjavi, H. Ghoreishy, and A. A. Ahmad, “A novel single-input dual-output three-level DC–DC converter,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8101-8111, Oct. 2018.
[106] X. Ruan, B. Li, Q. Chen, S. C. Tan, and C. K. Tse, “Fundamental considerations of three-level DC–DC converters: topologies, analyses, and control,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 55, no. 11, pp. 3733–3743, 2008.
G. PWM Inverters
[107] S. J. Chiang and C. M. Liaw. “Single-phase three-wire transformerless inveter,” IEE Proc. Electr. Power Appl., vol. 141, No. 4, pp. 197-205, 1994.
[108] J. Kim, J. Choi, and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST., 2000, vol. 3, pp. 1659-1664.
[109] V. Blasko and V. Kaura, “A new mathematical model and control of a three-phase AC-DC voltage source converter,” IEEE Trans. Power Electron., vol. 12, no. 1, pp. 116-123, Jan. 1997.
[110] Y. Wue, L. Chang, S. B. Kjær, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[111] C. Hou and P. Cheng, “Experimental verification of the active front-end converters dynamic model and control designs,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1112-1118, April 2011.
[112] R. Teodorescu, F. Blaabjerg, M. Liserre, and P.C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc. Electr. Power Appl., vol. 153, no. 5, pp. 750-762, 2006.
[113] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, October 2011.
[114] F. Wang, J. L. Duarte, and M. A. M. Hendrix, “Grid-interfacing converter systems with enhanced voltage quality for microgrid application—concept and implementation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3501-3513, Dec. 2011.
[115] J. A. Mueller, M. Rasheduzzaman, and J. W. Kimball, “A model modification process for grid-connected inverters used in islanded microgrids,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 240-250, March 2016.
H. Switch-mode Rectifiers
(a) Single-phase SMRs
[116] R. Martinez and P. N. Enjeti, “A high-performance single-phase rectifier with input power factor correction,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 311-317, March 1996.
[117] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[118] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
[119] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[120] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, July-Aug. 2011.
(b) Three-phase SMRs
[121] S. Gadelovitz and A. Kuperman, “Modeling and classical control of unidirectional Vienna rectifiers,” in Proc. IEEE PQ, 2012, pp. 1-4.
[122] T. Friedli, M. Hartmann, and J. W Kolar, “The essence of three-phase PFC rectifier systems-part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2013.
[123] L. Huber, M. Kumar, and M. M. Jovanović, “Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7123-7137, Dec. 2015.
[124] C. Wang, J. Liu, H. Cheng, Y. Zhuang, and Z. Zhao, “A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation,” Energies, vol. 12, no. 17, pp. 3375, Sep. 2019.
[125] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (Vienna) rectifier,” in Proc. IEEE PESC., 1996, pp. 1329-1336, vol. 2.
I. Others
[126] Y. C. Jiang, “Wind switched-reluctance generator based DC microgrid” M.S. thesis, Dept. Electr. Eng., Natl. Tsinghua Univ., Hsinchu, R.O.C., 2021.
[127] H. H. Lu, “ Development of a permanent-magnet synchronous motor driven wind turbine emulator and a wind switched-reluctance generator” M.S. thesis, Dept. Electr. Eng., Natl. Tsinghua Univ., Hsinchu, R.O.C., 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *