帳號:guest(18.226.185.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葛峻廷
作者(外文):Ko, Chun-Ting
論文名稱(中文):混和交直流微電網之抗雜訊與固定時間共識控制
論文名稱(外文):Noise-Resilient Fixed-Time Consensus Control for Hybrid AC/DC Microgrids
指導教授(中文):朱家齊
指導教授(外文):Chu, Chia-Chi
口試委員(中文):鄧人豪
黃維澤
劉建宏
口試委員(外文):Teng, Jen-Hao
Huang, Wei-Tzer
Liu, Jian-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061594
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:59
中文關鍵詞:多重微電網互聯轉換器二次控制固定時間共識功率共享抗雜訊即插即用
外文關鍵詞:Hybrid AC/DC microgrids (MGs)interlinking convertersecondary controlfixed-time consensuspower sharingnoise resilientplug-and-play
相關次數:
  • 推薦推薦:0
  • 點閱點閱:490
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於微電網的通訊通道容易受到隨機噪音的影響,通訊通道上的噪音會影響到微電網的控制狀態變數準確度,為了降低雜訊所帶來的負面影響,我們必須在微電網模型中使用抗雜訊的分散式控制方法。 為了實現上述混合交直流微電網的適當功率共享以及電壓幅度和頻率恢復,我們提出了一種新穎的分佈式抗雜訊固定時間基於共識的二次控制。所提出的固定時間控制的一個主要好處是收斂時間確實獨立於初始條件,這有助於我們確保根據任務要求可以事先定義穩定時間。李亞普諾夫(Lyapunov)函數理論嚴格證明了該方法的固定時間以及附加噪音的穩定性。為了展現所提出的基於共識型二次控制器的有效性,在即時模擬系統(OPAL-RT)環境下對基於六匯流排混合交直流微電網以及改良的IEEE三十四匯流排混合交直流微電網進行了負載變化、考慮附加噪音下的通訊通道及分佈式發電機的即插即用之模擬驗證。並且探討了與其他現有分佈式控制方法的比較,以顯示本論文所提出的分佈式二次控制的優勢。
Since communication channels of microgrids are prone to stochastic noise, these noises on the communication channel will affect the accuracy of the control state variables of the microgrids. In order to reduce the negative impact of noise, we need to apply noise-resilient distributed control method in the microgrid model. A novel distributed noise-resilient fixed-time consensus-based secondary control is proposed to achieve the proper power sharing and the voltage magnitude and the frequency restoration in hybrid inverter-based AC/DC microgrids. One major benefit of the proposed fixed-time control is that the converging time is indeed independent of the initial condition, which help us to assure the settling time can be predefined according to task requirements. The fixed-time with additive noises stability of the proposed control law is rigorously proven by the Lyapunov function theory. To show the effectiveness of the proposed consensus-based secondary controller, simulation studies under real-time simulator (OPAL-RT) environments of a 6-bus hybrid inverter-based AC/DC microgrids and a modified IEEE 34-bus hybrid AC/DC microgrids are performed under scenarios such as load variations, communication channel with additive noise, and plug-and-play operations of distributed generators. Comparison studies with other existing distributed control are also investigated to show the advantage of the proposed distributed secondary control.
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II
致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . VI
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . VIII
Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Problem Formulation and Preliminaries . . . . . . . . . . . . . . 5
2.1 Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Finite-Time and Fixed-Time Stability . . . . . . . . . . . . . . 5
2.3 Consensus Pinning Control . . . . . . . . . . . . . . . . . . . 6
2.4 Finite-Time Consensus Under Pinning Control . . . . . . . . . . 7
2.5 Fixed-Time Consensus Under Pinning Control . . . . . . . . . . . 9
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Model Descriptions . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Distributed Noise-Resilience Fixed-Time Control . . . . . . . . 13
3.2.1 Controller Design in AC MG . . . . . . . . . . . . . . . . . 14
3.2.2 Frequency Synchronization and Proper Power Sharing . . . . . 14
3.2.3 Voltage Restoration . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Controller Design in DC MG . . . . . . . . . . . . . . . . . .17
3.2.5 Controller Design in IC . . . . . . . . . . . . . . . . . . . 19
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Case 1 : 6-Bus Hybrid AC/DC MGs . . . . . . . . . . . . . . . . 21
4.1.1 Case 1.1 : Proposed Method Verification . . . . . . . . . . . 23
4.1.1.1 MATLAB Simulink . . . . . . . . . . . . . . . . . . . . . . 24
4.1.1.2 OPAL-RT . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 Case 1.2 : Different Communication Network . . . . . . . . . .30
4.1.2.1 MATLAB Simulink . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2.2 OPAL-RT . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.3 Case 1.3 : Change of Additive Noise Intensity . . . . . . . . 43
4.1.3.1 MATLAB Simulink . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3.2 OPAL-RT . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Case 2: Modified IEEE 34-Bus Hybrid AC/DC MGs . . . . . . . . . 46
4.2.1 Case 2.1 : Proposed Method Verification . . . . . . . . . . . 46
4.2.1.1 MATLAB Simulink . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1.2 OPAL-RT . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 53
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 53
REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
[1] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay “Microgrids,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78–94, July 2007.
[2] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jim ́enez-Est ́evez, and N. D.Hatziargyriou, “Trends in Microgrid Control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, July 2014.
[3] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, ”Hierarchical control of droop-controlled AC and DC microgrids: A general approach toward standardization”, IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[4] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, ”Distributed secondary control for islanded microgrids—A novel approach”, IEEE Trans. Power Electron., vol. 29, no. 2, pp. 1018-1031, Feb. 2014
[5] N. F. Avila and C. C. Chu, ”Distributed pinning droop control in isolated AC microgrids,” IEEE Tran. Industry Applications, vol. 53, no. 4, 3237-3249, 2017.
[6] Q. Zhou, M. Shahidehpour, A. Paaso, S. Bahramirad, A. Alabdulwahab, and A. Abusorrah, ”Distributed control and communication strategies in networked microgrids,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2586-2633, 2020.
[7] A. Gupta, S. Doolla and K. Chatterjee, ”Hybrid AC–DC microgrid: Systematic evaluation of control strategies”, IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3830-3843, Jul. 2018.
[8] L. Che, M. Shahidehpour, A. Alabdulwahab, and Y. Al-Turki, ”Hierarchical coordination of a community microgrid with AC and DC microgrids”, IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3042-3051, Nov. 2015.
[9] Z.Li, et al. ”Distributed Event-Triggered Hierarchical Control to Improve Economic Operation of Hybrid AC/DC Microgrids.” IEEE Transactions on Power Systems (2021).
[10] Q. Xu, J. Xiao, P. Wang and C. Wen, ”A decentralized control strategy for economic operation of autonomous AC DC and Hybrid AC/DC microgrids”, IEEE Trans. Energy Convers., vol. 32, no. 4, pp. 1345-1355, Dec. 2017.
[11] P. Lin et al., ”A distributed control architecture for global system economic operation in autonomous hybrid AC/DC microgrids”, IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2603-2617, May 2019.
[12] P. Ch. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, ”Autonomous control of interlinking converter with energy storage in hybrid AC–DC microgrid”, IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1374-1383, May 2013.
[13] P. Ch. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, ”Autonomous operation of hybrid microgrid with AC and DC subgrids”, IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, May. 2013.
[14] S. Peyghami, H. Mokhtari, and F. Blaabjerg, ”Autonomous operation of a hybrid AC/DC microgrid with multiple interlinking converters”, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6480-6488, Nov. 2018.
[15] P. Lin et al., ”A distributed power management strategy for multi-paralleled bidirectional interlinking converters in hybrid AC/DC microgrids”, IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5696-5711, Sep. 2019.
[16] H. G. Xiao, A. Luo, Z. K. Shuai, G. B Jin and Y. Huang, ”An improved control method for multiple bidirectional power converters in hybrid AC/DC microgrid”, IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 340-347, Jan. 2016.
[17] Y. Xia, Y. Peng, P. Yang, M. Yu and W. Wei, ”Distributed coordination control for multiple bidirectional power converters in a hybrid AC/DC microgrid”, IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4949-4959, Jun. 2017.
[18] P. Yang, Y. Xia, M. Yu, W. Wei and Y. Peng, ”A decentralized coordination control method for parallel bidirectional power converters in a hybrid AC-DC microgrid”, IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6217-6228, Aug. 2018.
[19] E. Espina, R. Cardenas-Dobson, J. W. Simpson-Porco, D. Saez and M. Kazerani, ”A consensus-based secondary control strategy for hybrid AC/DC microgrids with experimental validation”, IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5971-5984, May 2021.
[20] J. Zhou, H. Zhang, Q. Sun, D. Ma and B. Huang, ”Event-based distributed active power sharing control for interconnected ac and dc microgrids”, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6815-6828, Nov. 2018.
[21] J. Lai, X. Lu and F. Wang, ”Bilevel information-aware distributed resilient control for heterogeneous microgrid clusters”, IEEE Trans. Ind. Appl., vol. 57, no. 3, pp.2014-2022, Jun. 2021
[22] Y. Wang, S. Mondal, C. Deng, K. Satpathi, Y. Xu and S. Dasgupta, ”Cyber-resilient cooperative control of bidirectional interlinking converters in networked AC/DC microgrids”, IEEE Trans. Ind. Electron., Sep. 2020.
[23] J. Wang, C. Jin, and P. Wang, ”A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids”, IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6188-6197, Aug. 2018.
[24] W. Ren, ”Consensus based formation control strategies for multi-vehicle systems”, Proc. American Control Conf., pp. 4237-4242, 2006-June.
[25] H. Tanner, A. Jadbabaie, and G. J. Pappas, Flocking in Fixed and Switching Networks, 2005.
[26] Z. Zuo and L. Tie, “Distributed robust finite-time nonlinear consensus protocols for multi-agent systems,” International Journal of Systems Science, vol. 47, no. 5-8, pp. 1366–1375, 2016.
[27] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.
[28] K. Ogiwara, T. Fukami, and N. Takahashi, “Maximizing algebraic connectivity in the space of graphs with a fixed number of vertices and edges,” IEEE Trans. Control Netw. Syst., vol. 4, no. 2, pp. 359–368, Jun. 2017.
[29] Q. Zhou, M. Shahidehpour, Z. Li, L. Che, A. Alabdulwahab, and A. Abusorrah, “Compartmentalization strategy for the optimal economic operation of a hybrid AC/DC Microgrid,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1294–1304, Mar. 2020.
[30] S. Manaffam, M. Talebi, A. K. Jain, and A. Behal, “Intelligent pinning based cooperative secondary control of distributed generators for microgrid in islanding operation mode,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1364–1373, Mar. 2018.
[31] L. Wang and F. Xiao, “Finite-time consensus problems for networks of dynamic agents,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 950–955, Apr. 2010.
[32] Y. Xu, H. Sun, W. Gu, Y. Xu, and Z. Li, ”Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid,” IEEE Trans. Ind. Inform., vol. 15, no. 1, pp. 225-235, Jan. 2019.
[33] S. Sahoo and S. Mishra, “A distributed finite-time secondary average voltage regulation and current sharing controller for DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 282–292, Jan. 2019.
[34] Z. Deng, Y. Xu, H. Sun, and X. Shen, “Distributed, bounded and finite-time convergence secondary frequency control in an autonomous microgrid,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2776–2788, May 2019.
[35] T. Zhao and Z. Ding, “Distributed finite-time optimal resource management for microgrids based on multi-agent framework,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6571–6580, Aug. 2018.
[36] J. Hu and A. Lanzon, “Distributed finite-time consensus control for heterogeneous battery energy storage systems in droop-controlled microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 4751–4761, Sep. 2019.
[37] Z. Zuo, Q. L. Han, and B. Ning, Fixed-Time Cooperative Control of Multi-Agent Systems, Springer Int. Pub., Cham, Switzerland, 2019 .
[38] A. Polyakov, ”Nonlinear feedback design for fixed-time stabilization of linear control systems”, IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106-2110, Aug. 2012.
[39] B. Ning, Q. Han, and Z. Zuo, “Distributed optimization for multiagent systems: An edge-based fixed-time consensus approach,” IEEE Trans. Cybern., vol. 49, no. 1, pp. 122–132, Jan. 2019.
[40] G. Chen, Z. Li, and M. Wei, ”Distributed fixed-time secondary frequency and voltage control of islanded microgrids”, Proc. 36th Chin. Control Conf, pp. 10734-10739, 2017.
[41] S. Sahoo, S. Mishra, S. M. Fazeli, F. Li and T. Dragiˇcevi ́c, ”A distributed fixed-time secondary controller for dc microgrid clusters”, IEEE Trans. Energy Convers., vol. 34, no. 4, pp. 1997-2007, Dec. 2019.
[42] S. Shrivastava and B. Subudhi, “Distributed, fixed-time, and bounded control for secondary voltage and frequency restoration in islanded microgrids,” IET Smart Grid, vol. 2, no. 2, pp. 260–268, Jun. 2019.
[43] X. Lu, X. Yu, J. Lai, J. M. Guerrero, and H. Zhou, “Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links,” IEEE Trans. Ind. Informat., vol. 13, no. 2, pp. 448–460, Apr. 2017.
[44] N. M. Dehkordi, H. R. Baghaee, N. Sadati, and J. M. Guerrero, ”Distributed noise-resilient secondary voltage and frequency control for islanded microgrids”, IEEE Trans. Smart Grid,vol. 10, no. 4, pp. 3780-3790, Jul. 2019.
[45] H. Xin, Z. Qu, J. Seuss, and A. Maknouninejad, “A self-organizing strategy for power flow control of photovoltaic generators in a distribution network,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1462–1473, Aug. 2011.
[46] J. Lai, H. Zhou, X. Lu, X. Yu, and W. Hu, “Droop-based distributed cooperative control for microgrids with time-varying delays,” IEEE Trans. Smart Grid, vol. 7, no. 4, pp. 1775–1789, Jul. 2016.
[47] Y. Sun, W. Li, H. Shi, D. Zhao ,and S. Azaele, ”Finite-time and fixed-time consensus of multiagent networks with pinning control and noise perturbation”, SIAM J. Appl. Math., vol. 79, no. 1, pp. 111-130, 2019.
[48] A. Bidram, V. Nasirian, A. Davoudi and F. L. Lewis, Cooperative Synchronization in Distributed Microgrid Control , New York:Springer-Verlag., 2017.
[49] J. Zhou and P. T. Cheng, ”A modified Q − ̇V droop control for accurate reactive power sharing in distributed generation microgrid”, Proc. IEEE Energy Convers. Congr. Expo., pp. 4099-4106, 2017
[50] J. Zhou, M.-J. Tsai and P.-T. Cheng, ”Consensus-based cooperative droop control for accurate reactive power sharing in islanded AC microgrid”, IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 2, pp. 1108-1116, Jun. 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *