|
[1] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay “Microgrids,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78–94, July 2007. [2] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jim ́enez-Est ́evez, and N. D.Hatziargyriou, “Trends in Microgrid Control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, July 2014. [3] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, ”Hierarchical control of droop-controlled AC and DC microgrids: A general approach toward standardization”, IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011. [4] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, ”Distributed secondary control for islanded microgrids—A novel approach”, IEEE Trans. Power Electron., vol. 29, no. 2, pp. 1018-1031, Feb. 2014 [5] N. F. Avila and C. C. Chu, ”Distributed pinning droop control in isolated AC microgrids,” IEEE Tran. Industry Applications, vol. 53, no. 4, 3237-3249, 2017. [6] Q. Zhou, M. Shahidehpour, A. Paaso, S. Bahramirad, A. Alabdulwahab, and A. Abusorrah, ”Distributed control and communication strategies in networked microgrids,” IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2586-2633, 2020. [7] A. Gupta, S. Doolla and K. Chatterjee, ”Hybrid AC–DC microgrid: Systematic evaluation of control strategies”, IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3830-3843, Jul. 2018. [8] L. Che, M. Shahidehpour, A. Alabdulwahab, and Y. Al-Turki, ”Hierarchical coordination of a community microgrid with AC and DC microgrids”, IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3042-3051, Nov. 2015. [9] Z.Li, et al. ”Distributed Event-Triggered Hierarchical Control to Improve Economic Operation of Hybrid AC/DC Microgrids.” IEEE Transactions on Power Systems (2021). [10] Q. Xu, J. Xiao, P. Wang and C. Wen, ”A decentralized control strategy for economic operation of autonomous AC DC and Hybrid AC/DC microgrids”, IEEE Trans. Energy Convers., vol. 32, no. 4, pp. 1345-1355, Dec. 2017. [11] P. Lin et al., ”A distributed control architecture for global system economic operation in autonomous hybrid AC/DC microgrids”, IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2603-2617, May 2019. [12] P. Ch. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, ”Autonomous control of interlinking converter with energy storage in hybrid AC–DC microgrid”, IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1374-1383, May 2013. [13] P. Ch. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, ”Autonomous operation of hybrid microgrid with AC and DC subgrids”, IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, May. 2013. [14] S. Peyghami, H. Mokhtari, and F. Blaabjerg, ”Autonomous operation of a hybrid AC/DC microgrid with multiple interlinking converters”, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6480-6488, Nov. 2018. [15] P. Lin et al., ”A distributed power management strategy for multi-paralleled bidirectional interlinking converters in hybrid AC/DC microgrids”, IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5696-5711, Sep. 2019. [16] H. G. Xiao, A. Luo, Z. K. Shuai, G. B Jin and Y. Huang, ”An improved control method for multiple bidirectional power converters in hybrid AC/DC microgrid”, IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 340-347, Jan. 2016. [17] Y. Xia, Y. Peng, P. Yang, M. Yu and W. Wei, ”Distributed coordination control for multiple bidirectional power converters in a hybrid AC/DC microgrid”, IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4949-4959, Jun. 2017. [18] P. Yang, Y. Xia, M. Yu, W. Wei and Y. Peng, ”A decentralized coordination control method for parallel bidirectional power converters in a hybrid AC-DC microgrid”, IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6217-6228, Aug. 2018. [19] E. Espina, R. Cardenas-Dobson, J. W. Simpson-Porco, D. Saez and M. Kazerani, ”A consensus-based secondary control strategy for hybrid AC/DC microgrids with experimental validation”, IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5971-5984, May 2021. [20] J. Zhou, H. Zhang, Q. Sun, D. Ma and B. Huang, ”Event-based distributed active power sharing control for interconnected ac and dc microgrids”, IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6815-6828, Nov. 2018. [21] J. Lai, X. Lu and F. Wang, ”Bilevel information-aware distributed resilient control for heterogeneous microgrid clusters”, IEEE Trans. Ind. Appl., vol. 57, no. 3, pp.2014-2022, Jun. 2021 [22] Y. Wang, S. Mondal, C. Deng, K. Satpathi, Y. Xu and S. Dasgupta, ”Cyber-resilient cooperative control of bidirectional interlinking converters in networked AC/DC microgrids”, IEEE Trans. Ind. Electron., Sep. 2020. [23] J. Wang, C. Jin, and P. Wang, ”A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids”, IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6188-6197, Aug. 2018. [24] W. Ren, ”Consensus based formation control strategies for multi-vehicle systems”, Proc. American Control Conf., pp. 4237-4242, 2006-June. [25] H. Tanner, A. Jadbabaie, and G. J. Pappas, Flocking in Fixed and Switching Networks, 2005. [26] Z. Zuo and L. Tie, “Distributed robust finite-time nonlinear consensus protocols for multi-agent systems,” International Journal of Systems Science, vol. 47, no. 5-8, pp. 1366–1375, 2016. [27] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007. [28] K. Ogiwara, T. Fukami, and N. Takahashi, “Maximizing algebraic connectivity in the space of graphs with a fixed number of vertices and edges,” IEEE Trans. Control Netw. Syst., vol. 4, no. 2, pp. 359–368, Jun. 2017. [29] Q. Zhou, M. Shahidehpour, Z. Li, L. Che, A. Alabdulwahab, and A. Abusorrah, “Compartmentalization strategy for the optimal economic operation of a hybrid AC/DC Microgrid,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1294–1304, Mar. 2020. [30] S. Manaffam, M. Talebi, A. K. Jain, and A. Behal, “Intelligent pinning based cooperative secondary control of distributed generators for microgrid in islanding operation mode,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1364–1373, Mar. 2018. [31] L. Wang and F. Xiao, “Finite-time consensus problems for networks of dynamic agents,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 950–955, Apr. 2010. [32] Y. Xu, H. Sun, W. Gu, Y. Xu, and Z. Li, ”Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid,” IEEE Trans. Ind. Inform., vol. 15, no. 1, pp. 225-235, Jan. 2019. [33] S. Sahoo and S. Mishra, “A distributed finite-time secondary average voltage regulation and current sharing controller for DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 282–292, Jan. 2019. [34] Z. Deng, Y. Xu, H. Sun, and X. Shen, “Distributed, bounded and finite-time convergence secondary frequency control in an autonomous microgrid,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2776–2788, May 2019. [35] T. Zhao and Z. Ding, “Distributed finite-time optimal resource management for microgrids based on multi-agent framework,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6571–6580, Aug. 2018. [36] J. Hu and A. Lanzon, “Distributed finite-time consensus control for heterogeneous battery energy storage systems in droop-controlled microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 4751–4761, Sep. 2019. [37] Z. Zuo, Q. L. Han, and B. Ning, Fixed-Time Cooperative Control of Multi-Agent Systems, Springer Int. Pub., Cham, Switzerland, 2019 . [38] A. Polyakov, ”Nonlinear feedback design for fixed-time stabilization of linear control systems”, IEEE Trans. Autom. Control, vol. 57, no. 8, pp. 2106-2110, Aug. 2012. [39] B. Ning, Q. Han, and Z. Zuo, “Distributed optimization for multiagent systems: An edge-based fixed-time consensus approach,” IEEE Trans. Cybern., vol. 49, no. 1, pp. 122–132, Jan. 2019. [40] G. Chen, Z. Li, and M. Wei, ”Distributed fixed-time secondary frequency and voltage control of islanded microgrids”, Proc. 36th Chin. Control Conf, pp. 10734-10739, 2017. [41] S. Sahoo, S. Mishra, S. M. Fazeli, F. Li and T. Dragiˇcevi ́c, ”A distributed fixed-time secondary controller for dc microgrid clusters”, IEEE Trans. Energy Convers., vol. 34, no. 4, pp. 1997-2007, Dec. 2019. [42] S. Shrivastava and B. Subudhi, “Distributed, fixed-time, and bounded control for secondary voltage and frequency restoration in islanded microgrids,” IET Smart Grid, vol. 2, no. 2, pp. 260–268, Jun. 2019. [43] X. Lu, X. Yu, J. Lai, J. M. Guerrero, and H. Zhou, “Distributed secondary voltage and frequency control for islanded microgrids with uncertain communication links,” IEEE Trans. Ind. Informat., vol. 13, no. 2, pp. 448–460, Apr. 2017. [44] N. M. Dehkordi, H. R. Baghaee, N. Sadati, and J. M. Guerrero, ”Distributed noise-resilient secondary voltage and frequency control for islanded microgrids”, IEEE Trans. Smart Grid,vol. 10, no. 4, pp. 3780-3790, Jul. 2019. [45] H. Xin, Z. Qu, J. Seuss, and A. Maknouninejad, “A self-organizing strategy for power flow control of photovoltaic generators in a distribution network,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1462–1473, Aug. 2011. [46] J. Lai, H. Zhou, X. Lu, X. Yu, and W. Hu, “Droop-based distributed cooperative control for microgrids with time-varying delays,” IEEE Trans. Smart Grid, vol. 7, no. 4, pp. 1775–1789, Jul. 2016. [47] Y. Sun, W. Li, H. Shi, D. Zhao ,and S. Azaele, ”Finite-time and fixed-time consensus of multiagent networks with pinning control and noise perturbation”, SIAM J. Appl. Math., vol. 79, no. 1, pp. 111-130, 2019. [48] A. Bidram, V. Nasirian, A. Davoudi and F. L. Lewis, Cooperative Synchronization in Distributed Microgrid Control , New York:Springer-Verlag., 2017. [49] J. Zhou and P. T. Cheng, ”A modified Q − ̇V droop control for accurate reactive power sharing in distributed generation microgrid”, Proc. IEEE Energy Convers. Congr. Expo., pp. 4099-4106, 2017 [50] J. Zhou, M.-J. Tsai and P.-T. Cheng, ”Consensus-based cooperative droop control for accurate reactive power sharing in islanded AC microgrid”, IEEE J. Emerg. Sel. Topics Power Electron., vol. 8, no. 2, pp. 1108-1116, Jun. 2020. |