帳號:guest(3.146.221.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林宏宇
作者(外文):Lin, Hung-Yu
論文名稱(中文):大規模低軌道衛星在惡意攻擊影響下的強健性 H ∞ 分散式追蹤網路控制設計:應用HJIE強化式深度學習方法
論文名稱(外文):Decentralized H ∞ Observer-Based Attack-Tolerant Formation Tracking Network Control Of Large-Scale Satellites via HJIE-reinforced Deep Learning Approach
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):李征衛
吳仁銘
洪樂文
口試委員(外文):Li, Cheng-Wei
Wu, Jen-Ming
Hong, Yao-Win
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061586
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:65
中文關鍵詞:攻擊容忍控制基於觀察器的編隊控制大規模衛星網路控制系統HJIE強化式學習網路控制系統深度神經網路H∞分散式基於觀察器的編隊追蹤控制
外文關鍵詞:Attack-tolerant controlobserver-based formation controlLarge-scale satellite NCSHamilton Jacobi Isaacs equation(HJIE)-reinforcement learningnetwork control system(NCS) DNNH∞ decentralized observer-based formation tracking control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:956
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究針對在外部干擾和攻擊信號影響下的大型衛星編隊網絡控制系
統設計了一種基於觀察器的H∞攻擊容忍分散式編隊追踪控制策略。
首先,將攻擊信號的平滑信號模型嵌入到每顆衛星中,以避免其對
Luenberger觀測器狀態估測的破壞,並補償其對大型衛星編隊追蹤的
影響。此外,每顆衛星的基於觀測器的編隊追蹤網路控制系統必須
有效衰減來自相鄰衛星的外部干擾、測量雜訊和耦合效應之影響。
對於所提出的分散式H∞攻擊容忍基於觀察器的大型衛星編隊網路控
制系統,每一顆衛星都需要去求解一個非常複雜但解耦的Hamilton
Jacobi Isaacs方程(HJIE)。因此,針對每顆衛星採用基於HJIE
強化式學習的深度神經網絡(DNN)來直接解決相應的非線性偏微分
問題。當使用所提出的HJIE強化式Adam深度學習算法進行訓練時,
DNN可以計算出HJIE的H∞控制增益和觀察器增益以及最壞情況
下的外部干擾、測量雜訊和每顆衛星的耦合影響在離線訓練階段。也
就是說,基於HJIE強化學習算法的DNN方法可以實現強健性的分
散式H∞攻擊容忍基於觀察器的編隊控制策略。當基於HJIE強化式的
Adam學習算法收斂時,我們可以證明所提出的強化式學習DNN編隊追
蹤控制方法可以接近理論上的強健性分散式H∞攻擊容忍基於觀察
器的編隊追蹤策略。模擬中給出了一個具有外部干擾、測量雜訊和無
線通信惡意攻擊的衛星隊伍來驗證所提出之方法的有效性。
In this study, an H∞ attack-tolerant decentralized observer-based formation tracking control
strategy is designed for the network control system (NCS) of large-scale satellite team under
external disturbance and attack signal. First, smoothing signal models of attack signals are
embedded in each satellite to avoid their corruption on state estimation of Luenberger
observer and to compensate their effect on the formation tracking of large-scale satellites. In
addition, the observer-based formation tracking NCS of each satellite must efficiently
attenuate the external disturbance, measurement noise and coupling effect from adjacent
satellites. For the proposed decentralized H∞ attack-tolerant observer-based team formation
NCS of large-scale satellites, each satellite needs to solve a very complicated but decoupled
Hamilton Jacobi Isaacs equation (HJIE). Therefore, a proposed HJIE-reinforcement
learning-based deep neural network (DNN) is employed for each satellite to directly solve a
corresponding nonlinear partial differential control-observer-coupled HJIEi of decentralized
H∞ attack-tolerant observer-based formation tracking control problem. When trained by the
proposed HJIE-reinforcement Adam deep learning algorithm, DNN can be reinforced to
solve HJIEi for H∞ control gain and observer gain as well as the worst-case external
disturbance, measurement noise, and coupling of each satellite of the team formation in the
off-line training phase. That is, the proposed HJIE-reinforcement learning algorithm-based
DNN scheme in each satellite NCS can achieve robust decentralized H∞ attack-tolerant
observer-based team formation control strategy. When the HJIE-reinforcement-based Adam
learning algorithm converges, we can show that the proposed reinforcement learning-based
DNN formation tracking control scheme of each satellite can approach the theoretical robust
decentralized H∞ attack-tolerant observer-based formation tracking strategy of large-scale
satellites NCS. In the simulation example, a satellite team with external disturbance,
measurement noise and wireless communication malicious attack are given to validate the
effectiveness of proposed method separately.
摘要------------------I
Abstract-------------II
致謝------------------III
Content------------------IV
Introduction------------------1
The system dynamic model of satellite and problem formulation------------------6
HJIE-reinforcement DNN-based H∞ attack-tolerant observer-based
decentralized formation tracking control design of team formation
NCS of large-scale satellites------------------28
Simulation example------------------41
Conclusion------------------57
Reference------------------63
[1] G. Liu and S. Zhang, “A Survey on Formation Control of Small Satellites,” in Proceedings of the IEEE, vol. 106, no. 3,
pp. 440-457, March 2018.
[2] S. Ren, X. Yang, R. Wang, S. Liu and X. Sun, “The Interaction between the LEO Satellite Constellation and the Space
Debris Environment,” Appl. Sci., 2021, 11, 9490.
[3] A. U. Chaudhry and H. Yanikomeroglu, “Laser Inter-Satellite Links (LISLs) in a Starlink Constellation,” IEEE Vehicular
Technology Magazine, vol. 16, pp. 48-56, June 2021.
[4] D. P. Scharf, F. Y. Hadaegh and S. R. Ploen, “A survey of spacecraft formation flying guidance and control (part 1):
guidance,” Proceedings of the 2003 American Control Conference, pp. 1733-1739, 2003.
[5] Wang, P.K.C., Hadaegh, F.Y., “Minimum-Fuel Formation Reconfiguration of Multiple Free-Flying Spacecraft,” J of
Astronaut Sci 47, 77–102 (1999).
[6] A. Essghaier, L.Beji, M.A. El Kamel, A. Abichou, J.Lerber, “Co-leaders and a flexible virtual structure based formation
motion control,” International Journal of Vehicle Autonomous Systems (IJVAS), Vol. 9, No. 1/2, 2011.
[7] R. W. Beard, J. Lawton and F. Y. Hadaegh, “A coordination architecture for spacecraft formation control,” IEEE Trans.
Control Systems Technology, vol. 9, no. 6, pp. 777-790, Nov. 2001.
[8] Y. Huang and Y. Jia, A. Abichou, J.Lerber, “Adaptive Finite-Time 6-DOF Tracking Control for Spacecraft Fly Around With
Input Saturation and State Constraints,” IEEE Trans. Aerospace and Electronic Systems, vol. 55, no. 6, pp. 3259-3272,
Dec. 2019.
[9] C. B. Low, ““Adaptable Virtual Structure Formation Tracking Control Design for Nonholonomic Tracked Mobile Robots,
With Experiments,” 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2015, pp. 1868-1875.
[10] G. Pola, P. Pepe and M. D. D. Benedetto, “Decentralized Supervisory Control of Networks of Nonlinear Control Systems,”
IEEE Trans Automatic Control, vol. 63, no. 9, pp. 2803-2817, Sept. 2018.
[11] A. Yang, W. Naeem, G. W. Irwin and K. Li, “Stability Analysis and Implementation of a Decentralized Formation Control
Strategy for Unmanned Vehicles,” IEEE Trans. on Control Systems Technology, vol. 22, no. 2, pp. 706-720, March 2014.
[12] Y. Chang, C. Chang, C. Chen and C. Tao, “Fuzzy Sliding-Mode Formation Control for Multirobot Systems: Design and
Implementation,” IEEE Trans. on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 444-457, April
2012.
[13] M. Lee, B. Chen, Y. Chang and C. Hwang, “Stochastic Robust Team Formation Tracking Design of Multi-VTOL-UAV
Networked Control System in Smart City Under Time-Varying Delay and Random Fluctuation,” IEEE Access, vol. 8, pp.
131310-131326, 2020.
[14] X. Liu, S. S. Ge, C. Goh and Y. Li, “Event-Triggered Coordination for Formation Tracking Control in Constrained Space
With Limited Communication,” IEEE Trans. on Cybernetics, vol. 49, no. 3, pp. 1000-1011, March 2019.
[15] X. Liu and K. D. Kumar, “Network-Based Tracking Control of Spacecraft Formation Flying with Communication Delays,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 3, pp. 2302-2314, JULY 2012.
[16] A. Shui, W. Chen, P. Zhang, S. Hu, and X. Huang, “Review of fault diagnosis in control systems,” in Proc. Chin. Control
Decis. Conf., Guilin, China, 2009, pp. 5324–5329.
[17] S. Harshavarthini, R. Sakthivel, and C. K. Ahn, “Finite-time reliable attitude tracking control design for nonlinear quadrotor
model with actuator faults,” Nonlinear Dyn., vol. 96, no. 4, pp. 2681–2692, Jun. 2019.
[18] R. Sakthivel, T. Satheesh, S. Harshavarthini, and D. J. Almakhles, “Design of resilient reliable control for uncertain periodic
piecewise systems with time-varying delay and disturbances,” IEEE J. Franklin Inst., vol. 357, no. 17, pp. 12326–12345,
Nov. 2020.
[19] M. -Y. Lee, B. -S. Chen, C. -Y. Tsai and C. -L. Hwang, “Stochastic H∞ Robust Decentralized Tracking Control of
Large-Scale Team Formation UAV Network System With Time-Varying Delay and Packet Dropout Under Interconnected
Couplings and Wiener Fluctuations,” IEEE Access, vol. 9, pp. 41976-41997, 2021.
[20] R. K. Saha, “Spectrum Sharing in Satellite-Mobile Multisystem Using 3D In-Building Small Cells for High Spectral and
Energy Efficiencies in 5G and Beyond Era,” IEEE Access, vol. 7, pp. 43846-43868, 2019.
[21] Z. Zhang, Y. Shi, Z. Zhang, H. Zhang and S. Bi, “Modified Order-Reduction Method for Distributed Control of Multi-
Spacecraft Networks With Time-Varying Delays,” IEEE Trans. on Control of Network Systems, vol. 5, no. 1, pp. 79-92,
March 2018.
[22] P.Razzaghi and N.Assadian, ““Study of the triple-mass Tethered Satellite System under aerodynamic drag and J2
perturbations,” IEEE Access, vol. 7, pp. 43846-43868, 2019.
[23] R. Vijayan, M. Bilal and K. Schilling, “Nonlinear dynamic modeling of satellite relative motion with differential J2 and drag,” 2020 IEEE Aerospace Conference, 2020, pp. 1-8.
[24] C. S. Wu, and B. S. Chen, “Adaptive attitude control of spacecraft: A mixed H2 and H∞ approach,” AIAA. J. Guidance,
control and Dynamics, vol. 24, no. 4, pp. 755-766, 2001.
[25] C. Liu, Z. Sun, D. Ye and K. Shi, “Robust Adaptive Variable Structure Tracking Control for Spacecraft Chaotic Attitude
Motion,” IEEE Access, vol. 6, pp. 3851-3857, 2018.
[26] C-S Tseng, B.-S Chen and H.-J Uang, “Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,”
IEEE Trans. Fuzzy Systems, vol. 9, no. 3, pp. 381-392, June 2001.
[27] C-S Tseng and B.-S. Chen, “H∞ decentralized fuzzy model reference tracking control design for nonlinear interconnected
systems,” IEEE Trans. Fuzzy Systems, vol. 9, no. 6, pp. 795-809, Dec. 2001.
[28] G. Fengi, “A Survey on Analysis and Design of Model-Based Fuzzy Control Systems,” IEEE Trans. on Fuzzy Systems,
vol. 14, no. 5, pp. 676-697, Oct. 2006.
[29] B. S. Chen, Y. S. Ma, M. Y. Li “Stochastic Robust H∞ Decentralized Network Formation Tracking Control of Large-Scale
Team Satellites via Event-Triggered Mechanism,” IEEE Access, vol. 10, pp. 32011-62036, Jun. 2022.
[30] B. S. Chen, W. H. Chen and H. L. Wu, “Robust H2/H∞ global linearization filter design for nonlinear stochastic systems,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 7, pp. 1441–1454, Jul. 2009.
[31] K. A. Hoo and J. C. Kantor, “Global linearization and control of a mixedculture boireator with computation and external disturbance,” Mathematical Bioscience, vol. 82, no. 1, pp. 43-62, Nov. 1986.
[32] S. Boyd, L. EI Ghaoui, E. Feron and V. Balakrishan, “Linear matrix inequalities in system and control theory, ” Philadelphia,
PA: SIAM, 1994.
[33] R. A. Nichols, R. T. Reichert and W. J. Rugh, “Gain scheduling for H∞ controllers: A flight control example,” IEEE
Trans. Control System Technology, vol. 1, no. 2, pp. 69-79, Jun. 1993.
[34] B. S. Chen and C. F. Wu, “Robust scheduling filter design for a calss of nonlinear stochastic signal systems,” IEEE Trans.
Signal Processing, vol. 63, no. 23, pp. 6245–6257, Dec. 2015.
[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” ICLR, San Diego, pp. 1-15, arXiv preprint arXir:1412.6980, Dec. 2014.
[36] A. L. Maas, P. Qi, Z. Xie and A. Y. Hannun, “Building DNN acoustic models for large vocabulary speech recognition,”
Computer Speech and Language, vol. 41, pp. 195-213, Jan. 2017.
[37] D. Ciregan, U. Meier and J. Schmidhuber, “Multi-column deep neural networks for image classification,” IEEE Conf.
Comput. Vis. and Pattern Recognit. Providence, pp. 3642-3649, 2012.
[38] Y. n. Dong, G. S. Lian, “Research and Discussion on Image Recognition and Classification Algorithm Based on Deep
Learning,” 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), 02 January
2020.
[39] H. Shin etal, “Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics
and transfer learning,” IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1285-1298, May 2016.
[40] B. S. Chen, M. Y. Lee and T. H. Lin “DNN-Based H∞ Control Scheme of Nonlinear Time-Varying Dynamic Systems
With External Disturbance and Its Application to UAV Tracking Design,” IEEE Access, vol. 9, pp. 69635-69653, May.
2021.
[41] R. Vijayan, M. Bilal and K. Schilling “Nonlinear dynamic modeling of satellite relative motion with differential J2 and
drag,” 2020 IEEE Aerospace Conference, pp. 1-8, 2020.
[42] B. S. Chen, M. Y. Li, X. H. Chen “Security-Enhanced Filter Design for Stochastic Systems under Malicious Attack via Smoothed Signal Model and Multiobjective Estimation Method” IEEE Transactions on Signal Processing, vol. 68, pp.
4971-4986, Aug. 2020.
[43] S. X. Du, A. Dekka, and B. Wu “Modular Multilevel Converters: Analysis, Control, and Applications,” Hoboken, NJ, USA:
Wiley-IEEE Press, Jan. 2018.
[44] T. Basar and P. Bernhard “H∞ optimal control and related minmax design problems: A dynamic game approach,”
Birkh¨auser Boston, Boston, MA, 1995.
[45] W. Zhang, L. Xie and B. S. Chen “Stochasitc H2/H∞ control: A nash game approach,” CRC Press, 2017.
[46] Y. N. Dauphin, H. D. Vries, J. Chung and Y. Bengio “RMSProp and equilibrated adaptive learning rates for non-convex
optimization,” Machine Learning, vol. 1, pp. 1504-1512, Feb. 2015.
[47] D. Wang, B. Wu, E. K. Poh “Satellite Formation Flying. Relative Dynamics,” Fuel Optimal Maneuvers and Formation
Maintenance.
[48] S. Bahrami and M. Namvar “Rigid Body Attitude Control With Delayed Attitude Measurement,” IEEE Trans. Control
Systems Technology, vol. 23, no. 5, pp. 1961-1969, Sept. 2015.
[49] X. H. Li, C. K. Ahn, D. K. Lu and S. H. Guo, “Robust simultaneous fault estimation and nonfragile output feedback
fault-tolerant control for Markovian jump systems,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 49, no. 9,
pp. 1769–1776, Sep. 2019.
[50] B.S. Chen, C.S. Wu, Y.W. Jan, “Adaptive Fuzzy Mixed H2/H∞ Attitude Control of Spacecraft,” IEEE Trans. Aerospace
and Electronic Systems, vol. 36, no. 4, pp.1343-1359, Nov. 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *