|
[1] W. Haensch, T. Gokmen, and R. Puri, “The Next Generation of Deep Learning Hardware: Analog Computing,” Proceedings of the IEEE, vol. 107, no. 1, pp. 108–122, Jan. 2019. [2] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang, and P. Deaville, “In-Memory Computing: Advances and Prospects,” IEEE Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43–55, Aug. 2019. [3] J.-M. Hung, C.-J. Jhang, P.-C. Wu, Y.-C. Chiu, and M.-F. Chang, “Challenges and Trends of Nonvolatile In-Memory-Computation Circuits for AI Edge Devices,” IEEE Open Journal of the Solid-State Circuits Society, vol. 1, pp. 171–183, Oct. 2021. [4] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, “Emerging Non-Volatile Memories: Opportunities and Challenges,” ser. CODES+ISSS ’11. New York, NY, USA: Association for Computing Machinery, Oct. 2011, p. 325–334. [Online]. Available: https://doi.org/10.1145/2039370.2039420 [5] D. Miyashita, S. Kousai, T. Suzuki, and J. Deguchi, “Time-Domain Neural Network: A 48.5 TSOp/s/W Neuromorphic Chip Optimized for Deep Learning and CMOS Technology,” in Proc. 2016 IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2016, pp.25–28. [6] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training Deep Neural Networks with binary weights during propagations,” in Advances in Neural Information Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds., vol. 28. Curran Associates, Inc., Dec. 2015. [Online]. Available: https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf [7] P.-Y. Chen, B. Lin, I.-T. Wang, T.-H. Hou, J. Ye, S. Vrudhula, J.-s. Seo, Y. Cao, and S. Yu, “Mitigating Effects of Non-ideal Synaptic Device Characteristics for On-chip Learning,” in Proc. 2015 IEEE/ACM Int. Conf. Computer-Aided Design (ICCAD), Nov. 2015, pp.194–199. [8] C.-C. Chang, M.-H. Wu, J.-W. Lin, C.-H. Li, V. Parmar, H.-Y. Lee, J.-H. Wei, S.-S. Sheu, M. Suri, T.-S. Chang, and T.-H. Hou, “NV-BNN: An Accurate Deep Convolutional Neural Network Based on Binary STT-MRAM for Adaptive AI Edge,” in Proc. 2019 56th ACM/IEEE Des. Autom. Conf. (DAC), June 2019, pp. 1–6. [9] B. Zhang, L.-Y. Chen, and N. Verma, “Stochastic Data-driven Hardware Resilience to Efficiently Train Inference Models for Stochastic Hardware Implementations,” in Proc. 2019 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp.1388–1392. [10] M. E. Fouda, S. Lee, J. Lee, G. H. Kim, F. Kurdahi, and A. M. Eltawi, “IR-QNN Framework: An IR Drop-Aware Offline Training of Quantized Crossbar Arrays,” IEEE Access, vol. 8, pp. 228 392–228 408, Dec. 2020. [11] C.-W. Wu, “Symbiotic-System Approach for IOT Devices,” in Proc. 25th IEEE Asian Test Symp. (ATS), Nov. 2016. [12] C.-W. Wu, B.-Y. Lin, H.-W. Hung, S.-M. Tseng, and C. Chen, “Symbiotic System Models for Efficient IOT System Design and Test,” in Proc. 2017 Int. Test Conf. in Asia (ITC-Asia), Sept. 2017, pp. 71–76. [13] B.-Y. Lin, H.-W. Hung, S.-M. Tseng, C. Chen, and C.-W. Wu, “Highly Reliable and Low-Cost Symbiotic IOT Devices and Systems,” in Proc. 2017 IEEE Int. Test Conf. (ITC), Oct.2017, pp. 1–10.
|