帳號:guest(3.149.25.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉寶樹
作者(外文):Liu, Pao-Shu
論文名稱(中文):使用具有製程、電壓、溫度不敏感性的電壓-時間-電壓轉換器之十三位元低過取樣速率五階雜訊塑形連續漸進式類比數位轉換器
論文名稱(外文):A 13-ENOB Low-OSR Fifth-Order Noise Shaping SAR ADC with PVT-insensitive Voltage-Time-Voltage Converter
指導教授(中文):謝志成
指導教授(外文):Hsieh, Chih-Cheng
口試委員(中文):洪浩喬
陳佳宏
李泰成
口試委員(外文):Hong, Hao-Chiao
Chen, Chia-Hung
Lee, Tai-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061576
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:75
中文關鍵詞:雜訊塑形電壓-時間-電壓轉換器製程、電壓、溫度不敏感性連續漸進式類比數位轉換器
外文關鍵詞:noise-shapingV-T-VPVT-insensitiveSAR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:95
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
這篇論文提出一顆十三位元低過取樣速率五階雜訊塑形連續漸進式(successive-approximation register, SAR)類比數位轉換器(analog-to-digital converter, ADC)。
關鍵的雜訊塑形過濾器(noise shaping filter)部分使用了改良過的電壓-時間-電壓(Voltage-Time-Voltage, V-T-V)轉換器提供了可靠的開環增益,由於此增益主要來自於兩顆不同電容與兩條不同電流之間的比例,其增益本質上對於製程、電壓與溫度(Process-Voltage-Temperature, PVT)具有不敏感性,因此並不需要額外的校正或修剪即可實現理想的雜訊轉換函數 (noise transfer function, NTF)。此外,V-T-V轉換器只消耗動態功率。透過使用元件比例設計與動態功耗方式,所提出的ADC具有抵抗PVT變異與良好功率效益的特性。本作更解決了原本電流雜訊的問題,將ADC的解析度上升到更高的位置。
為了驗證本電路,此架構使用40奈米1P10M互補式金氧半導體製程製作,核心電路面積為 590 x 100um2,在1.1伏特電源電壓及五百萬赫茲取樣頻率操作下,此晶片在625千赫茲輸入頻寬實現之SNDR為81.8dB,其對應的ENOB為13-bit,功率消耗為90微瓦,而等效的Walden figure of merit (FoMW)為7.2fJ/conversion-step,Schreier figureof merit (FoMS)為180.2dB。
This paper presents a 13-bit low oversampling rate 5th-order noise-shaping successive-approximation register (SAR) analog-to-digital converter (ADC). The key component of the noise-shaping filter utilizes a reliable open-loop gain Voltage-Time-Voltage (V-T-V) converter. The gain primarily stems from the ratio of two different capacitors and two distinct currents, making it inherently insensitive to Process-Voltage-Temperature (PVT) variations. As a result, no additional calibration or trimming is required to achieve the desired noise transfer function (NTF). Furthermore, the V-T-V converter operates with dynamic power consumption. By employing component ratio design and dynamic power approach, the proposed ADC exhibits resistance to PVT variations and excellent power efficiency. This work further addresses the issue of current noise, elevating the resolution of the ADC to a higher level.
To validate this circuit, the architecture was fabricated using a 40nm 1P10M CMOS process. The core circuit area is 590 x 100um2. Operating at a supply voltage of 1.1V and a sampling frequency of 5MHz, this chip achieves an SNDR of 81.8 dB with a 625 kHz input bandwidth. The ENOB is 13 bits, and the power consumption is 90uW. The equivalent Walden figure of merit (FoMW) is 7.2 fJ/conversion-step, and the Schreier figure of merit (FoMS) is 180.2 dB.

Key words : noise-shaping SAR, V-T-V converter, low OSR, 5th-order NTF, PVT insensitive
ABSTRACT I
CONTENTS IV
LIST OF FIGURES VIII
LIST OF TABLES XI
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 SELECTION OF ARCHITECTURE 1
1.3 THESIS ORGANIZATION 3
CHAPTER 2 FUNDAMENTALS OF ADC 4
2.1 NYQUIST THEOREM 4
2.2 RESOLUTION 5
2.3 OFFSET ERROR 5
2.4 GAIN ERROR 6
2.5 QUANTIZATION ERROR 7
2.6 SIGNAL-TO-NOISE RATIO (SNR) AND EFFECTIVE NUMBER OF BITS (ENOB) 9
2.7 SIGNAL-TO-NOISE AND DISTORTION RATIO (SNDR) 10
2.8 EFFECTIVE NUMBER OF BITS (ENOB) 10
2.9 DIFFERENTIAL NONLINEARITY (DNL) 11
2.10 INTEGRAL NONLINEARITY (INL) 12
2.11 SPURIOUS-FREE DYNAMIC RANGE (SFDR) 13
2.12 FIGURE OF MERIT (FOM) 13
CHAPTER 3 OVERVIEW OF ADCS 14
3.1 TOP-LEVEL DISCUSSIONS 14
3.1.1 SAR ADC 14
3.1.2 Sigma-Delta Modulator (DSM or SDM) 16
3.1.3 Noise Shaping SAR ADC 18
3.2 SAMPLE AND HOLD (S/H) CIRCUITS 20
3.2.1 Sampling Speed 20
3.2.2 Signal Dependent Resistance 21
3.2.3 Charge Injection 22
3.2.4 Clock Feedthrough 23
3.2.5 kT/C Noise ……………………………………………………………. .24
3.3 DIGITAL-TO-ANALOG CONVERTER USING CAPACITIVE ARRAY 25
3.3.1 Parasitic Capacitance 26
3.3.2 Mismatch 27
3.4 COMPARATOR 28
3.4.1 Input-referred offset 29
3.5 ASYNCHRONOUS SAR LOGIC 30
3.6 STRUCTURE OF NOISE SHAPING SAR ADC 31
3.6.1 Cascaded Integrator Feed-Forward 31
3.6.2 Error-Feedback 32
3.7 SUMMARY 33
CHAPTER 4 DESIGN CONSIDERATIONS OF NOISE SHAPING SAR ADC 35
4.1 DIFFERENTIAL ADC 36
4.2 SAMPLE AND HOLD 37
4.3 COMPARATOR 37
4.4 CDAC 38
4.5 IMPLEMENTATION OF RESIDUE PROCESS 40
4.5.1 Prior Art 40
4.5.2 Signal Model 43
4.5.3 Non-Ideal Effect 44
4.6 SUMMARY 46
CHAPTER 5 CIRCUIT IMPLEMENTATION OF PROPOSED NOISE SHAPING SAR ADC 47
5.1 ARCHITECRURE OF PROPOSED NS SAR ADC 48
5.2 ARCHITECRURE OF PROPOSED V-T-V CONVERTER 50
5.3 DESIGN OF V-T-V CONVERTER AND SC FIR FILTERS 53
5.4 DESIGN OF SAMPLE AND HOLD (S/H) 54
5.5 DESIGN OF COMPARATOR 55
5.6 DESIGN OF CAPACITIVE DAC (C-DAC) 57
5.7 PRE-LAYOUT AND POST-LAYOUT SIMULATION 59
5.8 SUMMARY 61
CHAPTER 6 EXPERIMENTAL RESULTS 63
6.1 MEASUREMENT ENVIRONMENT SETUP 63
6.2 CHIP MICROGRAPH 64
6.3 MEASUREMENT RESULTS 65
6.4 PERFORMANCE COMPARISON 68
6.5 SUMMARY 68
CHAPTER 7 CONCLUSION 70
7.1 CONCLUSION 70
7.2 FUTURE WORK 70
BIBLIOGRAPHY 72
[1] B. Murmann, "ADC Performance Survey 1997-2023," [Online]. Available:http://web.stanford.edu/~murmann/adcsurvey.html.
[2] W. Guo, H. Zhuang and N. Sun, "A 13b-ENOB 173dB-FoM 2nd-order NS SAR ADC with passive integrators," 2017 Symposium on VLSI Circuits, 2017, pp. C236-C237.
[3] L. Jie, B. Zheng, H.-W. Chen, and M. P. Flynn, “A cascaded noise-shaping SAR architecture for robust order extension,” IEEE J. Solid-State Circuits, vol. 55, no. 12, pp. 3236–3247, Dec. 2020.
[4] R. J. Baker, CMOS: Circuit Design, Layout, and Simulation, 3rd ed. WILEY, 2010.
[5] T.-H. Wang, R. Wu, V. Gupta, X. Tang, and S. Li, “A 13.8-ENOB fully dynamic third-order noise-shaping SAR ADC in a single-amplifier EF-CIFF structure with hardware-reusing kT/C noise cancellation,” IEEE J. Solid-State Circuits, vol. 56, no. 12, pp. 3668–3680, Dec. 2021.
[6] J. Liu, D. Li, Y. Zhong, X. Tang, and N. Sun, “A 250 kHz-BW 93 dB-SNDR 4th-order noise-shaping SAR using capacitor stacking and dynamic buffering,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb. 2021, pp. 369–371.
[7] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed. WILEY, 2012.
[8] R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. Select. Areas Commun, vol. 17, no. 4, pp. 539–550, Apr 1999.
[9] R. Schreier and G. C. Temes, "Understanding Delta-Sigma Data Converters," IEEE Press, 2005.
[10] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed.: McGraw-Hill 2002.
[11] M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. Klumperink and B. Nauta, "A 1.9μW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," in IEEE ISSCC Dig. Tech. Papers, pp. 244-610, Feb. 2008.
[12] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, July 2006.
[13] C. Liu, S. Chang, G. Huang and Y. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010.
[14] T. Wang, T. Xie, Z. Liu, and S. Li, “An 84 dB-SNDR low-OSR 4th-order noise-shaping SAR with an FIA-assisted EF-CRFF structure and noise-mitigated push-pull Buffer-in-Loop technique,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2022, pp. 418–420.
[15] Y. Lin, C. Lin, S. Tsou, C. Tsai and C. Lu, "A 40MHz-BW 320MS/s Passive Noise-Shaping SAR ADC With Passive Signal-Residue Summation in 14nm FinFET," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), 2019, pp. 330-332.
[16] B. Razavi, Design of Analog CMOS Integrated Circuits, 1st ed. McGraw-Hill, 2002.
[17] K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto and K. Sushihara, "A 97.99 dB SNDR, 2 kHz BW, 37.1 μW noise-shaping SAR ADC with dynamic element matching and modulation dither effect," 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016,pp. 1-2.
[18] Y. Shu, L. Kuo and T. Lo, "An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS,"in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2928-2940, Dec. 2016.
[19] J. Liu, X. Wang, Z. Gao, M. Zhan, X. Tang and N. Sun, "A 40kHz-BW 90dB-SNDR Noise-Shaping SAR with 4× Passive Gain and 2nd-Order Mismatch Error Shaping," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 158-160.
[20] C. Liu and M. Huang, "A 0.46mW 5MHz-BW 79.7dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter," 2017 IEEE International Solid-State Circuits Conference (ISSCC), 2017, pp. 466-467.
[21] C. Lillebrekke, C. Wulff and T. Ytterdal, "Bootstrapped switch in low-voltage digital 90nm CMOS technology," 2005 NORCHIP, 2005, pp. 234-236.
[22] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal of Solid-StateCircuits, vol. 45, no. 6, pp. 1111-1121, Jun. 2010.
[23] S. W. M. Chen, R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
[24] H. Garvik, C. Wulff and T. Ytterdal, "An 11.0 bit ENOB, 9.8 fJ/conv.-step noise-shaping SAR ADC calibrated by least squares estimation," 2017 IEEE Custom Integrated CircuitsConference (CICC), 2017, pp. 1-4.
[25] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma Data Converters, 2nd ed. Piscataway, NJ, USA: IEEE Press, 2017.
[26] J. M. de la Rosa, "Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol.58, no. 1, pp. 1-21, Jan. 2011.
[27] M. A. Ghanad, C. Dehollain and M. M. Green, "Noise analysis for time-domain circuits," IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp.149-152.
[28] S. Li, B. Qiao, M. Gandara, D. Z. Pan and N. Sun, "A 13-ENOB Second-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using the Error-Feedback Structure," in IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3484-3496, Dec. 2018.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具有製程、電壓、溫度不敏感性電壓-時間-電壓轉換器之十二位元二階雜訊塑形連續漸進式類比數位轉換器
2. 一個具有1.3 mW平均功耗、10 MHz取樣速率、12-ENOB的雜訊重塑連續漸進式類比數位轉換器
3. 生醫應用之低功耗類比數位轉換器 : 具軌對軌可適性功率控制比較器設計
4. 具直流偏移校正與增益校準迴路之短通道可變增益放大器
5. 具有數位自動增益迴路之2.4-GHz無電感式射頻前端
6. 基於頻率合成器之 2.4-GHz 全數位控制式二進制頻移鍵控發射器
7. 具有電容不匹配校正之 2.4 GHz數位控制震盪器
8. A Quadrature Sub-harmonic Up-converter with Sideband & Carrier Leakage Calibration
9. 應用於影像感測器具線性度校正功能之行平行十位元漸進式類比數位轉換器
10. 應用於紅外線感測器陣列之1.8伏自動轉換增益讀出電路
11. 具自適應式電容切換技術之低功耗非同步漸近式類比數位轉換器之設計與製作
12. 具動態範圍延展及雜訊抑制之超低電壓0.5伏特脈衝寬度調變互補式金氧半導體影像感測器
13. 應用於互補式金屬氧化物半導體影像感測器以毗連像素傳遞技術讀出之時間延遲積分電路架構
14. 一個具有臨界電壓消除技術及可調變轉換曲線之高動態範圍線性對數互補式金氧半導體影像感測器
15. 一個應用於生醫系統低功耗多級共用內建截波器之切換式運算放大器三角積分調變器之設計與製作
 
* *