|
[1] Neftci, E., et al., Event-driven contrastive divergence for spiking neuromorphic systems. Frontiers in neuroscience, 2014. 7: p. 272. [2] Asl, M.M., Propagation delays determine the effects of synaptic plasticity on the structure and dynamics of neuronal networks. 2018. [3] Qiao, N., et al., A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses. Frontiers in neuroscience, 2015. 9: p. 141. [4] Ting-Heng Yu, Stochastic silicon neuron circuits based on RPO-FET for stochastic neuromorphic system, 2020. [5] Wu-Hsun Lai, The analysis and implementation of stochastic spiking neural network with on-chip learning capability, 2020. [6] Frenkel, C., et al., A 0.086-mm^2 12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. IEEE transactions on biomedical circuits and systems, 2018. 13(1): p. 145-158. [7] Chen, G.K., et al., A 4096-neuron 1M-synapse 3.8-pJ/SOP spiking neural network with on-chip STDP learning and sparse weights in 10-nm FinFET CMOS. IEEE Journal of Solid-State Circuits, 2018. 54(4): p. 992-1002. [8] LeCun, Y., The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998. [9] Abbott, L.F., Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain research bulletin, 1999. 50(5-6): p. 303-304. [10] Caporale, N. and Y. Dan, Spike timing-dependent plasticity: a Hebbian learning rule. Annual review of neuroscience, 2008. 31(1): p. 25-46. [11] Fischer, A. and C. Igel. An introduction to restricted Boltzmann machines. in Iberoamerican congress on pattern recognition. 2012. Springer. [12] Hinton, G.E., A practical guide to training restricted Boltzmann machines, in Neural networks: Tricks of the trade. 2012, Springer. p. 599-619. [13] Marsaglia, G., Xorshift rngs. Journal of Statistical Software, 2003. 8: p. 1-6. [14] Taherkhani, A., et al., A review of learning in biologically plausible spiking neural networks. Neural Networks, 2020. 122: p. 253-272. [15] Diehl, P.U. and M. Cook, Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Frontiers in computational neuroscience, 2015. 9: p. 99.
|