|
[1] J. Tu, K. Inthavong, and G. Ahmadi, The Human Respiratory System, pp. 19– 44. 01 2013. [2] K. A. Stevens, Geometry and material properties of vocal fold models. Brigham Young University, 2015. [3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016. [4] B. Woldert-Jokisz, “Saarbruecken voice database,” 2007. [5] A. Al-Nasheri, G. Muhammad, M. Alsulaiman, Z. Ali, K. H. Malki, T. A. Mesallam, and M. F. Ibrahim, “Voice pathology detection and classification using auto-correlation and entropy features in different frequency regions,” Ieee Access, vol. 6, pp. 6961–6974, 2017. [6] P. Harar, J. B. Alonso-Hernandezy, J. Mekyska, Z. Galaz, R. Burget, and Z. Smekal, “Voice pathology detection using deep learning: a preliminary study,” in 2017 international conference and workshop on bioinspired intelligence (IWOBI), pp. 1–4, IEEE, 2017. [7] A. Al-Nasheri, G. Muhammad, M. Alsulaiman, Z. Ali, T. A. Mesallam, M. Farahat, K. H. Malki, and M. A. Bencherif, “An investigation of multidimensional voice program parameters in three different databases for voice pathology detection and classification,” Journal of Voice, vol. 31, no. 1, pp. 113–e9, 2017. [8] M. Alhussein and G. Muhammad, “Voice pathology detection using deep learning on mobile healthcare framework,” IEEE Access, vol. 6, pp. 41034– 41041, 2018. [9] M. A. Mohammed, K. H. Abdulkareem, S. A. Mostafa, M. Khanapi Abd Ghani, M. S. Maashi, B. Garcia-Zapirain, I. Oleagordia, H. Alhakami, and F. T. Al-Dhief, “Voice pathology detection and classification using convolutional neural network model,” Applied Sciences, vol. 10, no. 11, p. 3723, 2020. [10] F. T. AL-Dhief, N. M. A. Latiff, N. N. N. A. Malik, N. Sabri, M. M. Baki, M. A. A. Albadr, A. F. Abbas, Y. M. Hussein, and M. A. Mohammed, “Voice pathology detection using machine learning technique,” in 2020 IEEE 5th International Symposium on Telecommunication Technologies (ISTT), pp. 99– 104, IEEE, 2020. [11] F. T. AL-Dhief, N. M. A. Latiff, M. M. Baki, N. N. N. A. Malik, N. Sabri, and M. A. A. Albadr, “Voice pathology detection using support vector machine based on different number of voice signals,” in 2021 26th IEEE Asia-Pacific Conference on Communications (APCC), pp. 1–6, IEEE, 2021. [12] S.-H. Fang, Y. Tsao, M.-J. Hsiao, J.-Y. Chen, Y.-H. Lai, F.-C. Lin, and C.- T. Wang, “Detection of pathological voice using cepstrum vectors: A deep learning approach,” Journal of Voice, vol. 33, no. 5, pp. 634–641, 2019. [13] H.-C. Hu, S.-Y. Chang, C.-H. Wang, K.-J. Li, H.-Y. Cho, Y.-T. Chen, C.-J. Lu, T.-P. Tsai, O. K.-S. Lee, et al., “Deep learning application for vocal fold disease prediction through voice recognition: preliminary development study,” Journal of medical Internet research, vol. 23, no. 6, p. e25247, 2021. [14] K. Shama, A. Krishna, and N. U. Cholayya, “Study of harmonics-to-noise ratio and critical-band energy spectrum of speech as acoustic indicators of laryngeal and voice pathology,” EURASIP Journal on Advances in Signal Processing, vol. 2007, pp. 1–9, 2006. [15] S. Abe, Support vector machines for pattern classification, vol. 2. Springer, 2005. [16] J. Jiang, E. Lin, and D. G. Hanson, “Vocal fold physiology,” Otolaryngologic Clinics of North America, vol. 33, no. 4, pp. 699–718, 2000. [17] M. T. Caserta, “Acute laryngitis,” Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, p. 760, 2015. [18] S. Takano, M. Kimura, T. Nito, H. Imagawa, K.-I. Sakakibara, and N. Tayama, “Clinical analysis of presbylarynx—vocal fold atrophy in elderly individuals,” Auris Nasus Larynx, vol. 37, no. 4, pp. 461–464, 2010. [19] C. N. Ford, K. Inagi, A. Khidr, D. M. Bless, and K. W. Gilchrist, “Sulcus vocalis: a rational analytical approach to diagnosis and management,” Annals of otology, rhinology & laryngology, vol. 105, no. 3, pp. 189–200, 1996. [20] H. M. Tucker, “Vocal cord paralysis—1979: etiology and management,” The Laryngoscope, vol. 90, no. 4, pp. 585–590, 1980. [21] H.-C. Chen, Y.-M. Jen, C.-H. Wang, J.-C. Lee, and Y.-S. Lin, “Etiology of vocal cord paralysis,” ORL, vol. 69, no. 3, pp. 167–171, 2007. [22] M. R. Naunheim and T. L. Carroll, “Benign vocal fold lesions: update on nomenclature, cause, diagnosis, and treatment,” Current opinion in otolaryngology & head and neck surgery, vol. 25, no. 6, pp. 453–458, 2017. [23] O. Kleinsasser, “Pathogenesis of vocal cord polyps,” Annals of Otology, Rhinology & Laryngology, vol. 91, no. 4, pp. 378–381, 1982. [24] K. Omori, “Diagnosis of voice disorders,” JMAJ, vol. 54, no. 4, pp. 248–253, 2011. [25] M. M. Johns, “Update on the etiology, diagnosis, and treatment of vocal fold nodules, polyps, and cysts,” Current opinion in otolaryngology & head and neck surgery, vol. 11, no. 6, pp. 456–461, 2003. [26] M. Bouchayer, G. Cornut, R. Loire, J. B. Roch, E. Witzig, and R. W. Bastian, “Epidermoid cysts, sulci, and mucosal bridges of the true vocal cord: a report of 157 cases,” The Laryngoscope, vol. 95, no. 9, pp. 1087–1094, 1985. [27] S. M. Zeitels, G. W. Bunting, R. E. Hillman, and T. Vaughn, “Reinke’s edema: phonatory mechanisms and management strategies,” Annals of Otology, Rhinology & Laryngology, vol. 106, no. 7, pp. 533–543, 1997. [28] J. S. Isenberg, D. L. Crozier, and S. H. Dailey, “Institutional and comprehensive review of laryngeal leukoplakia,” Annals of Otology, Rhinology & Laryngology, vol. 117, no. 1, pp. 74–79, 2008. [29] M. Cattaruzza, P. Maisonneuve, and P. Boyle, “Epidemiology of laryngeal cancer,” European Journal of Cancer Part B: Oral Oncology, vol. 32, no. 5, pp. 293–305, 1996. [30] R. Nocini, G. Molteni, C. Mattiuzzi, and G. Lippi, “Updates on larynx cancer epidemiology,” Chinese Journal of Cancer Research, vol. 32, no. 1, p. 18, 2020. [31] K. K. Paliwal, J. G. Lyons, and K. K. Wójcicki, “Preference for 20-40 ms window duration in speech analysis,” in 2010 4th International Conference on Signal Processing and Communication Systems, pp. 1–4, IEEE, 2010. [32] H. A. Fayed and A. F. Atiya, “Decision boundary clustering for efficient local svm,” Applied Soft Computing, vol. 110, p. 107628, 2021. [33] J. Milgram, M. Cheriet, and R. Sabourin, ““one against one”or “one against all”: Which one is better for handwriting recognition with svms?,” in tenth international workshop on Frontiers in handwriting recognition, Suvisoft, 2006. [34] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv preprint arXiv:1511.08458, 2015. [35] R. Islam, M. Tarique, and E. Abdel-Raheem, “A survey on signal processing based pathological voice detection techniques,” IEEE Access, vol. 8, pp. 66749–66776, 2020. [36] K. Palanisamy, D. Singhania, and A. Yao, “Rethinking cnn models for audio classification,” arXiv preprint arXiv:2007.11154, 2020. |