|
[1] Gardner, J. W. and Bartlett, P. N. A brief history of electronic noses. Sensors and Actuators B: Chemical, vol. 18, no. 1-3, pp. 210-211, 1994. [2] Axel, R. and Buck, L. B. Odorant receptors and the organization of the olfactory system. Nobel Prize in Physiology or Medicine, 2004. [3] Karakaya, D., Ulucan, O., Turkan, M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 17, pp. 179-209, 2020. [4] Loutfi, A., Coradeschi, S., Mani, G. K., Shankar, P., Rayappan, J. B. B. Electronic noses for food quality: A review. Journal of Food Engineering, vol. 144, pp. 103-111, 2015. [5] Compagnone, D., Faieta, M., Pizzoni, D., Natale, C. D., Paolesse, R., Van Caelenberg, T., Beheydt, B., Pittia, P. Quartz crystal microbalance gas sensor arrays for the quality control of chocolate. Sensors and Actuators B: Chemical, vol. 207, pp. 1114-1120, 2015. [6] Dutta, R., Hines, E. L., Gardner, J. W., Kashwan, K. R., Bhuyan, M. Tea quality prediction using a tin oxide-based electronic nose: An artificial intelligence approach. Sensors and Actuators B: Chemical, vol. 94, no. 2, pp. 228-237, 2003. [7] Wilson, A. D. Electronic-nose devices-potential for noninvasive early disease-detection applications. Annals of Clinical Case Reports, vol.2, Article number 1401, 2017. [8] Wong, D. M., Fang, C. Y., Chen, L. Y., Chiu, C. I., Chou, T. I., Wu, C. C., Chiu, S. W., Tang, K. T. Development of a breath detection method based E-nose system for lung cancer identification. In Proceedings of IEEE International Conference on Applied System Invention, IEEE, Chiba, Japan, pp. 1119-1120, 2018. [9] Mumyakmaz, B. and Karabacak, K. An E-nose-based indoor air quality monitoring system: Prediction of combustible and toxic gas concentrations. Turkish Journal of Electrical Engineering & Computer Sciences, vol. 23, no. 3, pp. 729-740, 2015. [10] Wang, J. and Yinon, J. Electrochemical sensing of explosives. In Counterterrorist Detection Techniques of Explosives. Amsterdam, Netherlands: Elsevier, pp. 91-107, 2007. [11] Estakhroueiyeh, H. R. and Rashedi, E. Detecting moldy Bread using an E-nose and the KNN classifier. 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 251-255, 2015. [12] Gaudioso, M., Khalaf, W., Pace, C. On the Use of the SVM Approach in Analyzing an Electronic Nose. 7th International Conference on Hybrid Intelligent Systems (HIS 2007), pp. 42-46, 2007. [13] Matteo, P. and Giorgio, S. Classification of electronic nose data with support vector machines. Sensors and Actuators B: Chemical, vol. 107, Issue 2, pp. 730-737, 2005. [14] Peng, P., Zhao, X., Pan, X., Ye, W. Gas classification using deep convolutional neural networks. Sensors 18, no. 157, 2018. [15] Wei, G., Li, G., Zhao, J., He, A. Development of a LeNet-5 gas identification CNN structure for electronic noses. Sensors 19, no. 1:217, 2019. [16] Zhang, L. and Zhang, D. Efficient solutions for discreteness, drift, and disturbance (3d) in electronic olfaction. IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 2, pp. 242-254, 2016. [17] Yan, J., Guo, X., Duan, S., Jia, P., Wang, L., Peng, C., Zhang, S. Electronic Nose Feature Extraction Methods: A Review. Sensors 15, no. 11, pp. 27804-27831, 2 Nov. 2015. [18] Artursson, T., Eklöv, T., Lundström, I., Mårtensson, P., Sjöström, M., Holmberg, M. Drift correction for gas sensors using multivariate methods. J. Chemometrics, vol. 14, no. 5/6, pp. 711-723, 2000. [19] Padilla, M., Perera, A., Montoliu, I., Chaudry, A., Persaud, K., Marco, S. Drift compensation of gas sensor array data by orthogonal signal correction. Chemometrics Intell. Laboratory Syst., vol. 100, no. 1, pp. 28-35, 2010. [20] Zhang, L., Liu, Y., He, Z., Liu, J., Deng, P., Zhou, X. Anti-drift in e-nose: A subspace projection approach with drift reduction. Sensors Actuators B: Chem., vol. 253, pp. 407-417, Jun. 2017. [21] Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L., Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sensors Actuators B: Chem., vol. 166, pp. 320-329, 2012. [22] Zhang, L. and Zhang, D. Domain adaptation extreme learning machines for drift compensation in e-nose systems. IEEE Trans. Instrume. Meas., vol. 64, no. 7, pp. 1790-1801, Jul. 2015. [23] Yi, R., Yan, J., Shi, D., Tian, Y., Chen, F., Wang, Z., Duan, S. Improving the performance of drifted/shifted electronic nose systems by cross-domain transfer using common transfer samples. Sensors and Actuators B: Chemical, vol. 329, 2021. [24] Huang, G., Song, S., Gupta, J. N. D., Wu, C. Semi-supervised and unsupervised extreme learning machines. IEEE Transactions on Cybernetics, vol. 44, no. 12, pp. 2405-2417, Dec. 2014. [25] Sharifmoghadam, M. and Jazayeriy, H. Breast cancer classification using AdaBoost-extreme learning machine. in Proceeding of Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS 2019), pp. 1-8, IEEE, Shahrood, Iran, Dec. 2019. [26] Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H. P., Schölkopf, B., Smola, J. Integrating structured biological data by Kernel Maximum Mean Discrepancy. Bioinformatics, vol. 22, Issue 14, pp. e49-e57, 2006. [27] Cheng, Y. C., Chou, T. I., Chiu, S. W., Tang, K. T. A Concentration-based drift calibration transfer learning method for gas sensor array data," IEEE Sensors Letters, vol. 4, no. 10, pp. 1-4, Art no. 7003704, Oct. 2020. [28] Ziyatdinov, A., Marco, S., Chaudry, A., Persaud, K., Caminal, P., Perera, A. Drift compensation of gas sensor array data by common principal component analysis. Sensors and Actuators B: Chemical, vol. 146, Issue 2, pp. 460-465, 2010. [29] Saeys, Y., Inza, I., Arrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007. [30] Gramm, A. S. High performance solvent vapor identification with a two sensor array using temperature cycling and pattern classification. Sensors and Actuators B-Chemical, vol. 95, no. 58, 2003. [31] Feng, S., Farha, F., Li, Q., Wan, Y., Xu, Y., Zhang, T., Ning, H. Review on Smart Gas Sensing Technology. Sensors 19, no. 17: 3760, 2019. [32] Zhao, X., Li, P., Xiao, K., Meng, X., Han, L., Yu, C. Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class Ensemble Learning Models. Sensors 19, no. 19: 3844, 2019. [33] Yan, K. and Zhang, D. Calibration transfer and drift compensation of e-noses via coupled task learning. Sensors and Actuators B: Chemical, vol. 225, pp. 288-297, 2016. [34] Zhang, L., Tian, F., Liu, S., Dang, L., Peng, X., Yin, X. Chaotic time series prediction of e-nose sensor drift in embedded phase space. Sensors and Actuators B: Chemical, vol. 182, pp. 71–79, 2013.
|