帳號:guest(18.119.160.13)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李宗霖
作者(外文):Li, Zong-Lin
論文名稱(中文):以載波脈衝調變技術降低多重併接三相交流T型電力轉換器之零序環流
論文名稱(外文):Mitigating Zero-Sequence Circulation Currents of Three-Phase Parallel Connected T-Type Power Converters Using Carrier-Based PWM
指導教授(中文):朱家齊
指導教授(外文):Chu, Chia-Chi
口試委員(中文):廖益弘
連國龍
陳宗柏
口試委員(外文):Liao, Yi-Hung
Lian, Kuo-Lung
Chen, Tsung-Po
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061514
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:60
中文關鍵詞:並聯轉換器載波脈波寬度調變模型預測控制零序環流
外文關鍵詞:Parallel Connected ConvertersCarrier-Based Pulse Width Modulation (CB-PWM)Model predictive control (MPC)Zero-Sequence Circulating Current (ZSCC)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:557
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來環保以及能源轉型逐漸成為各國探討的重要議題,隨著科技的進步,電動車(EV)越來越普及。隨著電動車越來越多,縮短電動車的充電時間成為了重要的議題。為了要縮短電動車的充電時間,轉換器的額定功率必須要很大。同時電動車也可以做為一個虛擬電廠平衡主電網的負載。當負載較高時,電動車可以向主電網供電。當負載較低時,主電網可以為電動車充電。為符合這些條件,在本論文中採用並聯三相三階T型轉換器($3LT^2C$),將主電網的三項交流電轉換成直流電壓800V為電動車充電。在並聯系統中存在兩個重要的問題:(1) 每個轉換器之間的負載分配。(2)由於轉換器的參數不同導致產生零序環流(ZSCC)。在眾多的控制策略中一般人們習慣利用載波脈波寬度調變(CB-PWM)來控制轉換器。但近年來,強大的微處理器的出現激發了人們對於模型預測控制(MPC)用在轉換器上產生了興趣。因此,在本論文中採用了這兩種控制方式,並分析這兩者控制的差異。
首先,為消除各轉換器之間的零序環流,需要先建立三階T型轉換器的零序環流公式,並依照公式建立零序等效模型。在模型預測控制中,利用所推出的零序環流公式可以得出各轉換器間所選擇的開關狀態對於零序環流的影響,並利用權重因子(power factor)來調整這些開關狀態對成本函數(cost function)的影響,進而讓各轉換器選擇適當的開關狀態。在CB-PWM中利用零序等效公式將控制方塊圖建模,並在第二個轉換器之後的三相電壓命令中加入零序環流消除控制。
最後本論文利用模擬工具PLECS來驗證所提的控制方式,並發現載波脈波寬度調變的電流總諧波失真(THD)較模型預測控制的電流總諧波失真還低。但在設計上載波脈波寬度調變需要將電路進行分析後再設計控制器,而模型預測控制則將電路進行分析後將其的開關狀態放入成本函數中即可得到最適合的輸出開關狀態。
With the advancement of technology, electric vehicles (EVs) are becoming more popular. With the increasing number of EVs, how to reduce their charging time has an important issue. To shorten the charging time of EVs, the power rating of the converter must be large. Moreover, EVs can also be used as a virtual power plant in smart grids to keep the power balance of the main grid. When the load is high, the EV can supply power to the main grid. When the load is low, the main grid can charge the EV. To ensure these bidirectional operation, a parallel connected three-phase three-level T-type converter ($3LT^2C$) is studied in this thesis to solve the following two problems: (1) load sharing among all converters. (2) eliminating the Zero-Sequence Circulating Current (ZSCC) which come from different parameters of converters.
To eliminate the ZSCC between the converters, analytical expressions of the ZSCC of the $3LT^2C$ and their corresponding equivalent circuit models will be established first. Two control schemes, including Carrier-Based Pulse Width Modulation (CB-PWM) and Model Predictive Control (MPC) are considered for comparison study. In CB-PWM, the ZSCC elimination controller is designed in each converter except the first converter. In MPC, the relationship between the switching state and ZSCC is derived first. The weighting factor is used to adjust each switching state in the corresponding cost function. We use the simulation tool PLECS to validate these two control methods. It can be concluded that the current total harmonic distortion (THD) of the CB-PWM strategy is lower than the MPC strategy. However, in the design phase, the MPC scheme seems to be more easy once the switching state is well-defined.
摘要I
ABSTRACT II
致謝III
Contents IV
List of Figures VI
List of Tables VIII
1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.2.1 Supressing ZSCC 2
1.2.2 Model Predictive Control 2
1.3 Contribution 3
1.4 Organization 3
2 Operation Principles of T-type Converters 5
2.1 Three-level 3LT2C 5
2.2 Switch Configuration and Commutation principle 5
2.3 Modulation Schmes 9
2.3.1 Space Vector Theory 9
2.3.2 Relationship between Space Vector and DC-link capacitors 10
2.3.3 Space Vector Modulation 12
2.3.4 Carrier-Based PWM (CB-PWM) 13
2.3.5 Optimal Space Vector in CB-PWM 15
2.3.6 DC-Link Voltage Balancing Under CB-PWM 18
2.4 Summary 19
3 Control of a Single Three-Phase T-Type Converter 20
3.1 DC-link Voltage Controller 21
3.2 PI-Based Current Loop Controller 22
3.3 MPC-Based Current Control 25
3.3.1 Finite-switching-state MPC without weight factor 27
3.3.2 Constant Switching Frequency MPC 29
3.4 Summary 31
4 Mitigating Zero-Sequence Circulating Currents in Parallel Connected Three-Phase T-Type Converters 32
4.1 Equivalent Circuits of ZSCC 32
4.2 Analysis of ZSCC 33
4.3 Interleaving Control Scheme 36
4.4 CBPWM Scheme 36
4.5 MPC Scheme 40
4.6 Summary 44
5 Simulation Validations 45
5.1 Simulations of a Single 3LT2C 45
5.1.1 Voltage Balance of the DC-Link Capacitor 46
5.1.2 Current Control and THD 47
5.1.3 Spectrum of Output Voltage 48
5.2 ZSCC Eliminations 48
5.2.1 MPC 48
5.2.2 CB-PWM 51
5.3 Comparison of CB-PWM and MPC 53
5.3.1 Effects of Loads 54
5.4 Summary 55
6 Conclusion 56
[1] C. Pan and Y. Liao, ”Modeling and Control of Circulating Currents for Parallel Three-Phase Boost Rectifiers With Different Load Sharing,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2776-2785, July 2008.
[2] M. H. Ravanji, N. Amouzegar Ashtiani, M. Parniani and H. Mokhtari, ”Modeling and Control of Zero-Sequence Circulating Current in Parallel Converters With Space Vector Modulation,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 363-377, March 2017.
[3] Z. Quan and Y. W. Li, ”A Three-Level Space Vector Modulation Scheme for Paralleled Converters to Reduce Circulating Current and Common-Mode Voltage,” IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 703-714, Jan. 2017.
[4] M. Schweizer and J. W. Kolar, ”Design and Implementation of a Highly Efficient Three-Level T-Type Converter for Low-Voltage Applications,” IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 899-907, Feb. 2013.
[5] J. Pou, R. Pindado, D. Boroyevich and P. Rodriguez, ”Evaluation of the low frequency neutral-point voltage oscillations in the three-level inverter,” IEEE Transactions on Industrial Electronics, vol. 52, no. 6, pp. 1582-1588, Dec. 2005.
[6] JO . Lopez, J. Alvarez, J. Doval-Gandoy and F. D. Freijedo, ”Multilevel Multiphase Space Vector PWM Algorithm,” IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 1933-1942, May 2008.
[7] Jae Hyeong Seo, Chang Ho Choi and Dong Seok Hyun, ”A new simplified space vector PWM method for three-level inverters,” IEEE Transactions on Power Electronics, vol. 16, no. 4, pp. 545-550, July 2001.
[8] Joohn-Sheok Kim, Seung-Ki Sul. ”A Novel Voltage Modulation Technique of the Space Vector PWM”. IEEJ Transactions on Industry Applications, vol. 116. no. 8, pp. 820-825, 1996.
[9] F. Wang, ”Sine-triangle vs. space vector modulation for three-level PWM voltage source inverters,” Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), 2000, pp. 2482-2488 vol.4.
[10] B. P. McGrath and D. G. Holmes, ”A comparison of multicarrier PWM strategies for cascaded and neutral point clamped multilevel inverters,” 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No.00CH37018), 2000, pp. 674-679 vol.2.
[11] B. P. McGrath, D. G. Holmes, and T. Lipo, ”Optimized space vector switching sequences for multilevel inverters,” IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1293-1301, Nov. 2003.
[12] P. Karamanakos, E. Liegmann, T. Geyer, and R. Kennel, ”Model Predictive Control of Power Electronic Systems: Methods, Results, and Challenges,” IEEE Open Journal of Industry Applications, vol. 1, pp. 95-114, 2020.
[13] J. Rodriguez and P. Cortes, Predictive control of power converters and electrical drives, John Wiley & Sons, 2012.
[14] M. Odavic, V. Biagini, P. Zanchetta, M. Sumner, and M. Degano, ”One-sample period-ahead predictive current control for high-performance active shunt power filters”, IET Power Electronics, vol. 4, no. 4, pp. 414-423, 2011.
[15] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, ”Delay Compensation in Model Predictive Current Control of a Three-Phase Inverter,” IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 1323-1325, Feb. 2012.
[16] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, ”Model Predictive Control—A Simple and Powerful Method to Control Power Converters,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1826-1838, June 2009.
[17] Y. Yang, H. Wen, M. Fan, M. Xie, and R. Chen, ”Fast Finite-Switching-State Model Predictive Control Method Without Weighting Factors for T-Type Three- Level Three-Phase Inverters,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1298-1310, March 2019.
[18] F. Donoso, A. Mora, R. C´ardenas, A. Angulo, D. S´aez, and M. Rivera, ”Finite-Set Model-Predictive Control Strategies for a 3L-NPC Inverter Operating With Fixed Switching Frequency,” IEEE Transactions on Industrial Electronics, vol. 65, no. 5, pp. 3954-3965, May 2018.
[19] Y. Yang, H. Wen, M. Fan, M. Xie, R. Chen, and Y. Wang, ”A Constant Switching Frequency Model Predictive Control Without Weighting Factors for T-Type Single-Phase Three-Level Inverters,” IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5153-5164, July 2019.
[20] Y. Yang, H. Wen, R. Chen, M. Fan, X. Zhang, M. Norambuena, and J. Rodriguez, ”An Efficient Model Predictive Control Using Virtual Voltage Vectors for Three-Phase Three-Level Converters With Constant Switching Frequency,” IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 3998-4009, April 2022.
[21] J, Hu, J. Guerrero, and S.Islam, Model Predictive Control for Microgrids from Power Electric Converters to Energy Management, The Institution of Engineering and Technology, 2021.
[22] T.-F. Wu, Y.-K. Chen, and Y.-H. Huang, ”3C strategy for inverters in parallel operation achieving an equal current distribution,” IEEE Transactions on Industrial Electronics, vol. 47, no. 2, pp. 273-281, April 2000.
[23] C. Pan and Y. Liao, ”Modeling and Coordinate Control of Circulating Currents in Parallel Three-Phase Boost Rectifiers,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 825-838, April 2007.
[24] Z. Shao, X. Zhang, F. Wang, and R. Cao, ”Modeling and Elimination of Zero-Sequence Circulating Currents in Parallel Three-Level T-Type Grid-Connected Inverters,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 1050-1063,
Feb. 2015.
[25] D. Zhang, F.Wang, R. Burgos, R. Lai, and D. Boroyevich, ”Impact of Interleaving on AC Passive Components of Paralleled Three-Phase Voltage-Source Converters,” IEEE Transactions on Industry Applications, vol. 46, no. 3, pp. 1042-1054, May-June 2010.
[26] A. Chen, Z. Zhang, X. Xing, K. Li, C. Du, and C. Zhang, ”Modeling and Suppression of Circulating Currents for Multi-Paralleled Three-Level T-Type Inverters,” IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3978-3988, July-Aug. 2019.
[27] A. Rashwan, M. A. Sayed, Y. A. Mobarak, G. Shabib, and T. Senjyu, ”Predictive Controller Based on Switching State Grouping for a Modular Multilevel Converter With Reduced Computational Time,” IEEE Transactions on Power Delivery, vol. 32, no. 5, pp. 2189-2198, Oct. 2017.
[28] X. Xing, C. Zhang, J. He, A. Chen, and Z. Zhang, ”Model predictive control for parallel three-level T-type grid-connected inverters in renewable power generations”, IET Renewable Power Generation, vol. 11, no. 11, pp. 1353-1363, 2017.
[29] Z. Zhang, A. Chen, X. Xing, and C. Zhang, ”A novel model predictive control algorithm to suppress the zero-sequence circulating currents for parallel three-phase voltage source inverters,” 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), 2016, pp. 3465-3470, doi: 10.1109/APEC.2016.7468365.
[30] X. Wang, J. Zou, K. Li, Z. Dong, G. Zhang, and X. Chuan, ”A model predictive control based zero-sequence circulating currents elimination algorithm for parallel operating three-level T-type inverters,” IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 583-588.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *