帳號:guest(18.116.50.87)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):巫威廷
作者(外文):Wu, Wei-Ting
論文名稱(中文):標準及無位置感測切換式整流器供電之同步磁阻馬達驅動系統
論文名稱(外文):SWITCH-MODE RECTIFIER FED STANDARD AND POSITION SENSORLESS SYNCHRONOUS RELUCTANCE MOTOR DRIVES
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):徐國鎧
曾萬存
口試委員(外文):Shyu, Kuo-Kai
Tseng, Wan-Tsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061513
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:104
中文關鍵詞:同步磁阻馬達切換式整流器適應換相移位損失最小化直接轉矩控制再生煞車無位置感測控制高頻訊號注入
外文關鍵詞:synchronous reluctance motorswitch-mode rectifieradaptive commutation shiftloss minimizationdirect torque controlregenerative brakingposition sensorless controlhigh-frequency signal injection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:389
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發標準及無位置感測同步磁阻馬達驅動系統並評估其運轉性能比較。以三相升壓切換式整流器由市電對馬達驅動系統供電,在建立良好調控直流鏈電壓下,具良好入電電力品質。首先探究同步磁阻馬達驅動控制之一些關鍵事務進行探討,含馬達構造、繞組電感特性、轉矩產生特性以及槽齒諧波效應等。接著,建構標準同步磁阻馬達驅動系統,並實測評估其性能。藉由所提損失最小化適應換相機構及考慮反電動勢與槽齒效應之電流控制器以獲得良好之驅控性能。同時,亦從事量化與強健速度控制器設計。所提直接轉矩控制係應用磁通命令計算及靜止框估測之磁通及轉矩為之,可進一步提升馬達之轉矩追控性能。
接著,建構具雙向功率潮流聯網之三相切換式整流器前級。由市電建立具升壓之直流鏈,增強馬達驅動系統於高速高載下之操控特性,並具良好之入電電力品質。同時,再生煞車回收能量亦可有效地回送至電網。
最後,設計實現高頻訊號注入之無位置感測同步磁阻馬達驅動系統。先探究直軸及交軸高頻注入之比較特性,據以選用交軸高頻注入機構。同時,採用變頻注入機制,減少槽齒諧波效應,獲得精確估測角度及較穩定之運轉特性。此外,本論文亦展現高頻注入之無位置感測直接轉矩控制之同步磁阻馬達驅動系統。由一些實驗結果驗證於廣速度範圍之良好驅動特性。
The thesis presents the development of a standard and a position sensorless synchronous reluctance motor (SynRM) drives and performs their comparative performance evaluation. The motor drives are powered from the utility grid via a three-phase boost switch-mode rectifier (SMR). Under well-regulated DC-link voltage, good line drawn power quality is preserved simultaneously. First, some key issues affecting the driving performance of a SynRM drive are explored, including the motor structural features, the winding inductance, the electromagnetic developed torque characteristics, the slotting harmonic effects, etc. Then, a standard SynRM drive is established and evaluated. Good driving performance is yielded by the proposed commutation approach achieving total loss minimization automatically, and the proper current control considering the effects of back-EMF as well as slotting harmonics. Moreover, the practical quantitative and robust speed controls are also made. The proposed direct torque control (DTC) possesses faster tracking response through the reference fluxlinkage calculation and the estimated torque and flux-linkage.
Second, the bidirectional grid-connected three-phase SMR front-end is developed. The varied and boosted DC-link voltage is established from the mains. The motor driving performance under higher speed and heavier load is enhanced with good line drawn power quality. Moreover, it allows the regenerative braking power be recovered and sent back to
the utility grid.
Third, the high frequency injected (HFI) position sensorless controlled SynRM drive is designed and implemented. After exploring the comparative characteristics for d- and qaxis injected schemes, the q-axis injection is proposed to yield more stable and accurate estimated rotor position. Moreover, the varied-frequency injection is adopted to avoid the adverse effects caused by the inherent slotting harmonics. In addition, the HFI position sensorless DTC SynRM drive is presented. The satisfactory driving performance over wide speed range is verified by some measured results.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES xi
LIST OF SYMBOLS xii
LIST OF ABBREVIATIONS xvii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 SYNCHRONOUS RELUCTANCE MOTOR DRIVE AND INTERFACE CONVERTERS
6
2.1 Introduction 6
2.2 Converter-fed SynRM Drive 6
2.3 Structure of Synchronous Reluctance Motor 7
2.4 Governing Equations 10
2.5 Switch-mode Rectifiers 14
2.6 The Employed DSP TMS320F28335 18
2.7 Sensing and Interfacing Circuits 19
CHAPTER 3 DC SOURCE POWERED STANDARD SYNCHRONOUS RELUCTANCE MOTOR DRIVE WITH FIELD-ORIENTED AND DIRECT-TORQUE CONTROLS 21
3.1 Introduction 21
3.2 FOC SynRM Drive 21
3.2.1 System Configuration 21
3.2.2 Mathematical Modeling of SynRM 23
3.2.3 Control Scheme 29
3.2.4 Experimental Evaluation for the Established FOC SynRM Drive for established 34
3.3 DTC SynRM Drive 44
3.3.1 Functional Description 45
3.3.2 Experimental Results of the Established DTC SynRM Drive 48
CHAPTER 4 SWITCH-MODE RECTIFIER FED SYNCHRONOUS RELUCTANCE MOTOR DRIVE
52
4.1 Introduction 52
4.2 The Developed Three-phase Full-bridge Boost SMR 52
4.3 Three-phase Full-bridge SMR fed Standard SynRM Drive 66
CHAPTER 5 POSITION SENSORLESS CONTROL OF SYNCHRONOUS RELUCTANCE MOTOR DRIVE 72
5.1 Introduction 72
5.2 The Developed SMR-fed HFI Position Sensorless FOC SynRM Drive
72
5.2.1 System Configuration 72
5.2.2 Sinusoidal Wave HFI Method 74
5.2.3 Experimental Evaluation 79
5.3 The Developed SMR-fed Position Sensorless DTC SynRM Drive 86
5.3.1 System Configuration 86
5.3.2 Position Estimation 86
5.3.3 Experimental Evaluation 88
5.4 Comparative Characteristics of the Developed SMR-fed Position Sensorless FOC and DTC SynRM Drive 93
CHAPTER 6 CONCLUSIONS 97
REFERENCES 98
A. Synchronous Reluctance Motor Drive
Fundamentals of SynRM
[1] T. A. Lipo, “Synchronous reluctance machine - a viable alternative for AC drive,” Electric Machine & Power System, vol. 19, no. 6, pp. 659-671, 1991.
[2] T. J. E. Miller, A. Hutton, C. Cossar, and D. A. Staton, “Design of a synchronous reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 27, no. 4, pp. 741-749, 1991.
[3] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
[4] M. D. Nardo, G. L. Calzo, M. Galea, and C. Gerada, “Design optimization of a high-speed synchronous reluctance machine,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 233-243, 2018.
[5] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto, and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” in Proc. IEEE IAS, 1999, vol. 2, pp. 840-845.
[6] A. Boglietti, A. Cavagnino, M. Pastorelli, D. Staton, and A. Vagati, “Thermal analysis of induction and synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 42, no. 3, pp. 675-680, 2006.
[7] L. Lavrinovicha and J. Dirba, “Comparison of permanent magnet synchronous motor and synchronous reluctance motor based on their torque per unit volume,” in Proc. IEEE EPQSRC, 2014, pp. 233-236.
[8] S. M. de Pancorbo, G. Ugalde, J. Poza, and A. Egea, “Comparative study between induction motor and synchronous reluctance motor for electrical railway traction applications,” in Proc. IEEE EDPC, 2015, pp. 1-5.
[9] R. H. Moncada, H. A. Young, B. J. Pavez-Lazo, and J. A. Tapia, “A commercial-off-the- shelf synchronous reluctance motor as a generator for wind power applications,” in Proc. IEEE IEMDC, 2015, pp. 6-12.
[10] M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3030-3040, 2015.
[11] M. Alnajjar and D. Gerling, “Synchronous reluctance generator with FPGA control of three-level neutral-point-clamped converter for wind power application,” in Proc. IEEE PEMC, 2016, pp. 498-504.
[12] V. Kazakbaev, V. Prakht, V. Dmitrievskii, and I. Sokolov, “The feasibility study of the application of a synchronous reluctance motor in a pump drive,” in Proc. IEEE ICPDS, 2016, pp. 1-4.
[13] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello, and E. Fornasiero, “Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4762-4769, 2016.
Motor design
[14] T. Matsuo and T. A. Lipo, “Rotor design optimization of synchronous reluctance machine,” IEEE Trans. Energy Convers., vol. 9, no. 2, pp. 359-365, 1994.
[15] A. Vagati, M. Pastorelli, G. Francheschini, and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758-765, 1998.
[16] M. Sanada, K. Hiramoto, S. Morimoto, and Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement,” IEEE Trans. Ind. Appl., vol. 40, no. 4, pp. 1076-1082, 2004.
[17] R. R. Moghaddam, F. Magnussen, and C. Sadarangani, “Novel rotor design optimization of synchronous reluctance machine for low torque ripple,” in Proc. IEEE ICEM, 2012, pp. 720-724.
[18] N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187-195, 2015.
[19] J. Ikäheimo, J. Kolehmainen, T. Känsäkangas, V. Kivelä, and R. R. Moghaddam, “Synchronous high-speed reluctance machine with novel rotor construction,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2969-2975, 2014.
[20] M. Palmieri, M. Perta, and F. Cupertino, “Design of a 50.000-r/min synchronous reluctance machine for an aeronautic diesel engine compressor,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3831-3838, 2016.
[21] A. Credo, G. Fabri, M. Villani, and M. Popescu, “Adopting the topology optimization in the design of high-speed synchronous reluctance motors for electric vehicles,” IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 5429-5438, 2020.
[22] M. Barcaro, N. Bianchi, and F. Magnussen, “Permanent-magnet optimization in permanent-magnet-assisted synchronous reluctance motor for a wide constant-power speed range,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2495-2502, 2012.

B. Motor Control
MTPA and Loss minimization control
[23] S. Yamamoto, K. Tomishige, and T. Ara, “A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation,” IEEE Trans. Ind. Appl., vol. 43, no. 1, pp. 47-56, 2007.
[24] J. B. Im, W. Kim, K. Kim, C. S. Jin, J. H. Choi, and J. Lee, “Inductance calculation method of synchronous reluctance motor including iron loss and cross magnetic saturation,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2803-2806, 2009.
[25] E. M. Rashad, T. S. Radwan, and M. A. Rahman, “A maximum torque per ampere vector control strategy for synchronous reluctance motors considering saturation and iron losses,” in Proc. IEEE IAS, 2004, vol. 4, pp. 2411-2417.
[26] S. Bolognani, L, Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20-28, 2011.
[27] S. Bolognani, R. Petrella, A. Prearo, and L. Sgarbossa, “Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 105-114, 2011.
[28] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani, and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157-2166, 2015.
[29] S. M. Ferdous, P. Garcia, M. A. M. Oninda, and M. A. Hoque, “MTPA and field weakening control of synchronous reluctance motor,” in Proc. IEEE ICECE, 2016, pp. 598-601.
[30] L. Xu, X. Xu, T. A. Lipo, and D. W. Novotny, “Vector control of a synchronous reluctance motor including saturation and iron loss,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 977-985, 1991.
[31] I. Kioskeridis and C. Mademlis, “Energy efficiency optimization in synchronous reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 150, no. 2, pp. 201-209, 2003.
[32] H. F. Hofmann, S. R. Sanders, and A. EL-Antably, “Stator-flux-oriented vector control of synchronous reluctance machines with maximized efficiency,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1066-1072, 2004.
[33] S. Yamamoto, H. Hirahara, J. B. Adawey, T. Ara, and K. Matsuse, “Maximum efficiency drives of synchronous reluctance motors by a novel loss minimization controller with inductance estimator,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2543-2551, 2013.
[34] Z. Qu, T. Tuovinen, and M. Hinkkanen, “Minimizing losses of a synchronous reluctance motor drive taking into account core losses and magnetic saturation,” in Proc. IEEE EPE ECCE, 2014, pp. 1-10.
Current control
[35] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[36] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[37] G. Gatto, I. Marongiu, A. Serpi, and A. Perfetto, “Predictive control of synchronous reluctance motor drive,” in Proc. IEEE ISIE, 2007, pp. 1147-1152.
[38] M. C. Chou and C. M. Liaw, “Development of robust current 2-DOF controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
Direct torque control
[39] Jun-Koo Kang and S. K. Sul, “New direct torque control of induction motor for minimum torque ripple and constant switching frequency,” IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1076-1082, 1999.
[40] D. Casadei, G. Serra, and K. Tani, “Implementation of a direct control algorithm for induction motors based on discrete space vector modulation,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 769-777, 2000.
[41] M. F. Rahman, M. E. Haque, Lixin Tang, and Limin Zhong, “Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 799-809, 2004.
[42] Lixin Tang, Limin Zhong, M. F. Rahman, and Y. Hu, “A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 346-354, 2004.
[43] Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2382-2389, Nov.-Dec. 2012
[44] A. Shinohara, Y. Inoue, S. Morimoto, and M. Sanada, “Maximum torque per ampere control in stator flux linkage synchronous frame for DTC-based PMSM drives without using q-axis inductance,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3663-3671, 2017.
[45] G. Foo, S. Sayeef, and M. F. Rahman, “Low-speed and standstill operation of a sensorless direct torque and flux controlled IPM synchronous motor drive,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 25-33, 2010.
[46] A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, “Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines,” IEEE Trans. Power Electron. vol. 33, no. 3, pp. 2447- 2457, 2018.
[47] C. Li, G. Wang, G. Zhang, D. Xu and D. Xiao, “Saliency-Based Sensorless Control for SynRM Drives With Suppression of Position Estimation Error,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 5839-5849, 2019.
[48] Y. Inoue, S. Morimoto, and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115-121, 2011.
[49] S. Wiedemann and A. Dziechciarz, “Comparative evaluation of DTC strategies for the synchronous reluctance machine,” in Proc. IEEE EVER, 2015, pp. 1-5
[50] H. Hadla and S. Cruz, “Predictive stator flux and load angle control of synchronous reluctance motor drives operating in a wide speed range,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6950-6959, 2017.

C. Three-phase AC/DC Converter
[51] Y. Jiang, H. Mao, F. C. Lee, and D. Borojevic, “Simple high performance three-phase boost rectifiers,” in Proc. IEEE PESC, 1994, vol. 2, pp. 1158-1163.
[52] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey, and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[53] J. Itoh and I. Ashida, “A novel three-phase PFC rectifier using a harmonic current injection method,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 715-722, 2008.
[54] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[55] J. Muhlethaler, M. Schweizer, R. Blattmann, J. W. Kolar, and A. Ecklebe, “Optimal design of LCL harmonic filters for three-phase PFC rectifiers,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3114-3125, 2013.
[56] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems - part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[57] A. Mallik and A. Khaligh, “Control of a three-phase boost PFC converter using a single dc-link voltage sensor,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6481-6492, 2017.
[58] R. X. Du, L. Zhou, H. Lu, and H. Tai, “DC link active power filter for three-phase diode rectifier,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1430-1442, 2012.
[59] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998.
[60] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[61] R. Burgos, R. Lai, Y. Pei, F. Wang, D. Boroyevich and J. Pou, “Space vector modulator for Vienna-type rectifiers based on the equivalence between two- and three-level converters: a carrier-based implementation,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1888-1898, 2008.
[62] N. B. H. Youssef, K. Al-Haddad, and H. Y. Kanaan, “Large-signal modeling and steady-state analysis of a 1.5-kW three-phase/switch/level (Vienna) rectifier with experimental validation,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1213-1224, 2008.
[63] L. Hang, B. Li, M. Zhang, Y. Wang, and L. M. Tolbert, “Equivalence of SVM and carrier-based PWM in three-phase/wire/level Vienna rectifier and capability of unbalanced-load control,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 20-28, 2014.
[64] P. W. Wheeler, J. C. Clare, M. Apap, and K. J. Bradley, “Harmonic loss due to operation of induction machines from matrix converters,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 809-816, Feb. 2008
[65] Y. Bak and K. B. Lee, “Constant speed control of a permanent-magnet synchronous motor using a reverse matrix converter under variable generator input conditions,” in Proc. IEEE JESTPE, 2018., vol. 6, no. 1, pp. 315-326

D. Position Sensorless Control
Observer-based method
[66] T. Hanamoto, A. Ghaderi, M. Harada, and T. Tsuji, “Sensorless speed control of synchronous reluctance motor using a novel flux estimator based on recursive fourier transformation,” in Proc. IEEE ICIT, 2009, pp. 1-6.
[67] T. Tuovinen, M. Hinkkanen, and J. Luomi, “Analysis and design of a position observer with resistance adaptation for synchronous reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 49, no. 1, pp. 66-73, 2013.
[68] H. A. A. Awan, T. Tuovinen, S. E. Saarakkala, and M. Hinkkanen, “Discrete-time observer design for sensorless synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3968-3979, 2016.
[69] D. Nguyen, L. Loron, and K. Dakhouche, “High-speed sensorless control of a synchronous reluctance motor based on an Extended Kalman Filter,” in Proc. IEEE EPE ECCE, 2015, pp. 1-10.
Extended back-EMF method
[70] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of synchronous reluctance motors based on extended EMF models considering magnetic saturation with online parameter identification,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1264-1274, 2006.
[71] K. Kato, M. Tomita, M. Hasegawa, S. Doki, S. Okuma, and S. Kato, “Position and velocity sensorless control of synchronous reluctance motor at low speed using disturbance observer for high-frequency extended EMF,” in Proc. IEEE IECON, 2011, pp. 1971-1976.
[72] S. Kondo, Y. Sato, T. Goto, M. Tomita, M. Hasegawa, S. Doki, and S. Kato, “Position and velocity sensorless control for synchronous reluctance motor at low speeds and under loaded conditions using high-frequency extended EMF observer and heterodyne detection,” in Proc. IEEE ICEM, 2014, pp. 857-863.
[73] S. Bolognani, L. Ortombina, F. Tinazzi, and M. Zigliotto, “Model sensitivity of fundamental-frequency-based position estimators for sensorless pm and reluctance synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 77-85, 2018.
Method based on rotor saliency
[74] S. J. Kang, J. M. Kim, and S. K. Sul, “Position sensorless control of synchronous reluctance motor using high frequency current injection,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1271-1275, 1999.
[75] F. Briz, M. W. Degner, A. Diez, and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
[76] J. H. Jang, J. I. Ha, M. Ohto, K. Idle, and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[77] J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron, and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
[78] H. W. D. Kock, M. J. Kamper, and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
[79] S. C. Agarlita, I. Boldea, and F. Blaabjerg, “High-frequency-injection-assisted “active- flux”- based sensorless vector control of reluctance synchronous motors, with experiments from zero speed,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 1931-1939, 2012.
[80] W. T. Villet, M. J. Kamper, P. Landsmann, and R. Kennel, “Evaluation of a simplified high frequency injection position sensorless control method for reluctance synchronous machine drives,” in Proc. IET PEMD, 2012, pp. 1-6.
Square-wave type HFI
[81] G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508- 1511.
[82] Y. D. Yoon, S. K. Sul, S. Morimoto, and K. Ide, “High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011.
[83] N. C. Park and S. H. Kim, “Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,” IET Elect. Power Appl., vol. 8, no. 2, pp. 68-75, 2014.
[84] D. Kim, Y. C. Kwon, S. K. Sul, J. H. Kim, and R. S. Yu, “Suppression of injection voltage disturbance for high-frequency square-wave injection sensorless drive with regulation of induced high-frequency current ripple,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 302-312, 2016.
[85] T. Kojima, T. Suzuki, M. Hazeyama, and S. Kayano, “Position sensorless control of synchronous reluctance machines based on magnetic saturation depending on current phase angles,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2171-2179, 2020.

E. Others
[86] V. K. Ganissetti, “Development of an electric vehicle synchronous reluctance motor drive and its interconnected operations to grid and microgrid,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *