帳號:guest(18.119.159.204)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭丁崧
作者(外文):Cheng, Ting-Sung
論文名稱(中文):具直流快充功能之電動車感應馬達驅動系統
論文名稱(外文):AN ELECTRIC VEHICLE INDUCTION MOTOR DRIVE WITH DC FAST CHARGING FUNCTION
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):劉添華
陳盛基
口試委員(外文):Liu, Tian-Hua
Chen, Seng-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061508
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:115
中文關鍵詞:電動車感應馬達間接式磁場導向控制弱磁電池超電容三相LLC諧振轉換器維也納切換式整流器
外文關鍵詞:EVIMindirect field-oriented controlfield-weakeningbatterySCthree-phase LLC resonant converterVienna SMR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:439
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
環保電動車之普及有益於降低環境污染,為建立電動車驅控技術,本論文開發以電池/超電容混和能源供電之電動車感應馬達驅動系統。此外,開發一車外隔離式直流快速充電器,由市電對車載電池快速充電,並具良好之入電電力品質。
首先,開發間接式磁場導向感應馬達驅動系統。適當設定激磁電流及角速度滑差命令,獲得在額定轉速內之定磁通驅動性能。除適當地設計電流、轉矩和速度控制器外,以所提之參數估測法,估測磁場導向控制所需之馬達關鍵參數。超過額定轉速之定功率操控,本論文採用傳統之 (1/wr)法進行弱磁控制。
接著,建立並評估電池/超電容混合供電之馬達驅動系統。為了提高能源管理彈性,電池與超電容分別藉由雙向降壓/升壓轉換器連接至變頻器之直流鏈。透過變動直流鏈電壓策略,使車輛在廣速度範圍有良好驅動性能。超電容之加入,可降低電池之快速及短暫充/放電操作。藉由所提之濾波電流分離法,可平順地分配電池及超電容之能量。
最後,設計一車外隔離式直流快速充電器。電力電路由三相維也納切換式整流器及三相LLC諧振轉換器組成。所建構之維也納切換式整流器採用單周期控制,使其易於實現良好之功因矯正功能。至於三相LLC諧振轉換器,因既有之零電壓開關特性,在高頻切換下具良好效率並可達成隔離之電網對車輛充電功能。
Popularization of environment friendly electric vehicle (EV) is beneficial in the reduction of pollution. To establish EV drive technology, this thesis develops a battery/supercapacitor (SC) hybrid source powered electric vehicle induction motor (IM) drive. Besides, an off-board isolated DC fast charger is established to conduct battery quick charging from the mains with good line drawn power quality.
First, the indirect field-oriented (IFO) IM drive is developed. The flux current and slip angular speed commands are properly set to yield the improved driving performance below rated speed under constant flux. In addition to the properly designed current, torque and speed dynamic controllers, the motor parameters used for conducting the IFO control are obtained by the proposed estimation process. Above rated speed, the traditional (1/wr) method is adopted for making the field-weakening control.
Next, the battery/SC powered EV IM drive is established and evaluated. To increase the energy managing flexibility, the battery and SC are interfaced to the inverter DC-link via bidirectional buck/boost converters. Through varied DC-link voltage arrangement, satisfactory driving characteristics are obtained over wide speed range. The SC is added to assist the battery in reducing its quick and short discharging/charging operations. The smooth energy sharing between battery and SC is achieved through the proposed filter-based current separation approach.
Finally, an off-board quick charger is designed. The power circuit is formed by a three-phase Vienna SMR and a three-phase LLC resonant converter. By adopting the one-cycle control (OCC), the developed Vienna SMR can be easily implemented to possess satisfactory power factor corrected (PFC) function. As to the three-phase LLC resonant converter, thanks to the inherent zero-voltage switch (ZVS) characteristic, good efficiency in high-frequency switching and the function of isolated G2V charging can be achieved.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xii
LIST OF SYMBOLS xiii
LIST OF ABBREVIATIONS xx
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 REVIEW OF SOME TECHNOLOGIES RELATRED TO ELECTRIC VEHICLE 5
2.1 Introduction 5
2.2 Some Key Issues of EV IM Drive and Battery Chargers 5
2.3 Electric Vehicles 6
2.3.1 Classifications 6
2.3.2 Power Control Units 8
2.4 Energy Storage Devices 10
2.5 EV Chargers 14
2.5.1 Chargers 14
2.5.2 Electric Vehicle Service Equipment 15
2.6 Interface Converters 16
2.7 Induction Motor Drive 21
2.7.1 Structures 21
2.7.2 Slots Types and NEMA Classification 21
2.7.3 Induction Motor Drive Modeling 22
2.7.4 Indirect Field-Orientation 26
2.7.5 Induction Motor Torque-speed Characteristics and Capability 27
CHAPTER 3 ELECTRIC VEHICLE INDUCTION MOTOR DRIVE WITH FIXED-VOLTAGE DC-LINK 29
3.1 Introduction 29
3.2 Power Circuit 29
3.2.1 Estimation of Single-phase Equivalent Circuit Parameters 31
3.2.2 Field-current Command Setting 33
3.2.3 Voltage-source Inverter 35
3.2.4 Sensing and Interface Circuits 36
3.2.5 DSP TMS320F28379 38
3.3 Control Scheme 39
3.3.1 Current Controller 39
3.3.2 Speed Controller 40
3.4 Performance Evaluation under Speed Mode 42
3.4.1 Starting Characteristics 42
3.4.2 Speed Dynamic Responses 43
3.4.3 Steady-state Characteristics 44
3.4.4 Acceleration/Deceleration and Reversible Operation 45
3.4.5 Dynamic Braking 46
3.5 Field-weakening Control Using (wb/wr) Approach 47
3.5.1 Flux Current and Angular Speed Slip Limit Setting 47
3.5.2 Experimental Results 48
3.6 Evaluation of Programmed Speed Pattern 50
3.7 Energy Conversion Efficiency Assessment 52
3.8 Torque Control Mode 55
3.8.1 Torque Feedback controller 55
3.8.2 Robust Torque Error Cancellation Controller(RTECC) 56
3.8.3 Torque Tracking Responses 56
CHAPTER 4 BATTERY/SC HYBRID SOURCE POWERED EV INDUCTION MOTOR DRIVE 57
4.1 Introduction 57
4.2 System Configuration 57
4.3 Battery Interface DC/DC Converter 62
4.3.1 Power Circuit 63
4.3.2 Control Schemes 64
4.3.3 Experimental Results 69
4.3.4 Measurement of the Efficiency 71
4.4 SC Interface DC/DC Converter 72
4.4.1 Power Circuit 72
4.4.2. Control Schemes 73
4.5 Evaluation of the Constructed Battery/SC Powered EV IM Drive 77
4.5.1 Battery Only with Fixed DC-link Voltage 77
4.5.2 Battery with Varied DC-link Voltage 80
4.5.3 Battery and Supercapacitor Hybrid Source 83
CHAPTER 5 THE DEVELOPED DC FAST CHARGER 85
5.1 Introduction 85
5.2 System Configuration 85
5.3 Three-Phase Vienna SMR Converter 85
5.3.1 Circuit Operation 85
5.3.2 Equivalent Circuit Analysis 90
5.3.3 Power Circuit Components 91
5.3.4 Control Schemes 93
5.3.5 Simulated Results 95
5.3.6 Measured Results 95
5.4 Three-Phase LLC Resonant DC/DC Converter 98
5.4.1 System Configuration 98
5.4.2 Frequency Response Analysis 99
5.4.3 System Components Design 101
5.4.4 Control Strategy 103
5.4.5 Measured Results 103
CHAPTER 6 CONCLUSIONS 108
REFERENCES 109
A. Electric Vehicles
[1] A. Emadi, Y. J. Lee, and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2237-2245, June 2008.
[2] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, Jan. 2011.
[3] A. M. Lulhe and T. N. Date, “A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV),” in Proc. IEEE ICCICCT, pp. 632-636, 2015.
[4] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006.
[5] Z. Q. Zhu and D. Howe, “Electrical machines and drives for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, April 2007, pp. 746-765.
[6] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2322-2332, Dec. 2012.
[7] J. de Santiago, H. Brnhoff, B. Ekergurd, S. Eriksson, S. Ferhatovic, R. Waters, and H. Leijon., “Electrical motor drivelines in commercial all-electric vehicles: a review,” IEEE Trans. Veh. Technol. vol. 61, no. 2, pp. 475-484, Feb. 2012.
[8] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
B. Induction Motor Drives
[9] R. Ueda, T. Sonoda, K. Koga, and M. Ichikawa, “Stability analysis in induction motor driven by V/f controlled general-purpose inverter,” IEEE Trans. Ind. Appl., vol. 28, no. 2, pp. 472-481, March-April 1992.
[10] I. Kioskeridis and N. Margaris, “Loss minimization in scalar-controlled induction motor drives with search controllers,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 213-220, March 1996.
[11] A. Munoz-Garcia, T. A. Lipo, and D. W. Novotny, “A new induction motor V/f control method capable of high-performance regulation at low speeds,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 813-821, Aug. 1998.
[12] T. M. Rowan, R. J. Kerkman, and D. Leggate, “A simple on-line adaption for indirect field orientation of an induction machine,” IEEE Trans. Ind. Appl., vol. 27, no. 4, pp. 720-727, July-Aug. 1991.
[13] D. S. Zinger, F. Profumo, T. A. Lipo, and D. W. Novotny, “A direct field-oriented controller for induction motor drives using tapped stator windings,” IEEE Trans. Power Electron., vol. 5, no. 4, pp. 446-453, Oct. 1990.
[14] C. M. Liaw, Y. S. Kung, and C. M. Wu, “Design and implementation of a high-performance field-oriented induction motor drive,” IEEE Trans. Ind. Electron., vol. 38, no. 4, pp. 275-282, Aug. 1991.
[15] J. K. Seok, S. I. Moon, and S. K. Sul, “Induction machine parameter identification using PWM inverter at standstill,” IEEE Trans. Energy Convers., vol. 12, no. 2, pp. 127-132, June 1997.
[16] A. Gastli, “Identification of induction motor equivalent circuit parameters using the single-phase test,” IEEE Trans. Energy Convers., vol. 14, no. 1, pp. 51-56, March 1999.
[17] J. K. Seok and S. K. Sul, “Induction motor parameter tuning for high-performance drives,” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 35-41, Feb. 2001.
[18] S. D. Sudhoff, D. C. Aliprantis, B. T. Kuhn, and P. L. Chapman, “Experimental characterization procedure for use with an advanced induction machine model,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 48-56, March 2003.
[19] M. Shin and D. Hyun, “Online identification of stator transient inductance in rotor-flux-oriented induction motor drive,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2018-2023, Aug. 2007.
[20] A. Boglietti, A. Cavagnino, L. Ferraris, and M. Lazzari, “Induction motor equivalent circuit including the stray load losses in the machine power balance,” IEEE Trans. Energy Convers., vol. 23, no. 3, pp. 796-803, Sept. 2008.
[21] L. Harnefors, K. Pietilainen, and L. Gertmar, “Torque-maximizing field-weakening control: design, analysis, and parameter selection,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 161-168, Feb. 2001.
[22] F. Briz, A. Diez, M. W. Degner, and R. D. Lorenz, “Current and flux regulation in field-weakening operation [of induction motors],” IEEE Trans. Ind. Appl., vol. 37, no. 1, pp. 42-50, Jan.-Feb. 2001.
[23] X. Xu and D. W. Novotny, “Selecting the flux reference for induction machine drives in the field weakening region,” in Proc. IEEE IAS, 1991, pp. 361-7367.
[24] M. S. Huang and C. M. Liaw, “Field-weakening control for an IFO induction motor drive,” in Proc. IEEE TENCOM, vol.3, pp. 1994-1998, 2002.
[25] M. S. Huang and C. M. Liaw, “Improved field-weakening control for IFO induction motor," IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 2, pp. 647-659, April 2003.
[26] L. Harnefors and H. P. Nee, “Model-based current control of AC machines using the internal model control method,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 133-141, Jan.-Feb. 1998
[27] I. Miki, O. Nakao and S. Nishiyama, “A new simplified current control method for field-oriented induction motor drives,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1081-1086, Nov.-Dec. 1991
[28] R. D. Lorenz, T. A. Lipo, and D. W. Novotny, “Motion control with induction motors,” in Proc. IEEE, Aug. 1994, pp. 1215-1240.
[29] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[30] D. G. Holmes, B. P. McGrath, and S. G. Parker, “Current regulation strategies for vector-controlled induction motor drives,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3680-3689, Oct. 2012.
[31] C. M. Liaw, Y. M. Lin and K. H. Chao, “A VSS speed controller with model reference response for induction motor drive,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1136-1147, Dec. 2001.
[32] F. Barrero, A. Gonzalez, A. Torralba, E. Galvan, and L. G. Franquelo, “Speed control of induction motors using a novel fuzzy sliding-mode structure,” IEEE Trans. Fuzzy Syst. vol. 10, no. 3, pp. 375-383, June 2002.
[33] J. Talla, V. Q. Leu, V. Šmídl, and Z. Peroutka, “Adaptive speed control of induction motor drive with inaccurate model,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 8532-8542, Nov. 2018.
[34] C. M. Liaw and F. J. Lin, “A robust speed controller for induction motor drives,” IEEE Trans. Ind. Electron., vol. 41, no. 3, pp. 308-315, June 1994.
[35] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[36] C. Yu, J. Tamura and R. D. Lorenz, “Optimum DC bus voltage analysis and calculation method for inverters/motors with variable DC bus voltage,” IEEE Trans. Ind. Appl. vol. 49, no. 6, pp. 2619-2627, Nov.-Dec. 2013.
[37] S. Sridharan and P. T. Krein, “Optimizing variable DC link voltage for an induction motor drive under dynamic conditions,” in Proc. IEEE ITEC, 2015, pp. 1-6.
[38] S. Wongprasert, T. Sapaklom, and M. Konghirun, “Efficiency improvement of traction drive system with induction motor using dynamic DC-bus voltage adjustment over a wide speed range operation,” in Proc. IEEE ICEMS, 2020, pp. 940-944.
[39] I. Takahashi and Y. Ohmori, “High-performance direct torque control of an induction motor,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 257-264, March-April 1989.
[40] Jun-Koo Kang and S. K. Sul, “New direct torque control of induction motor for minimum torque ripple and constant switching frequency,” IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1076-1082, Sept.-Oct. 1999.
[41] N. R. N. Idris and A. H. M. Yatim, “Direct torque control of induction machines with constant switching frequency and reduced torque ripple,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 758-767, Aug. 2004.
[42] D. Casadei, G. Serra, and K. Tani, “Implementation of a direct control algorithm for induction motors based on discrete space vector modulation,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 769-777, July 2000.
[43] Z. Sorchini and P. T. Krein, “Formal derivation of direct torque control for induction machines,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1428-1436, Sept. 2006.
[44] H. Kubota and K. Matsuse, “Speed sensorless field-oriented control of induction motor with rotor resistance adaptation,” IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1219-1224, Oct. 1994.
[45] Y. Yoon and S. Sul, “Sensorless control for induction machines based on square-wave voltage injection,” IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3637-3645, July 2014.
[46] Y. B. Zbede, S. M. Gadoue, and D. J. Atkinson, “Model predictive MRAS estimator for sensorless induction motor drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3511-3521, June 2016.
[47] E. S. de Santana, E. Bim, and W. C. do Amaral, “A predictive algorithm for controlling speed and rotor flux of induction motor,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4398-4407, Dec. 2008.
[48] C. M. Liaw and J. B. Wang, “Design and implementation of a fuzzy controller for a high performance induction motor drive,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 4, pp. 921-929, Aug. 1991.
[49] M. N. Uddin, T. S. Radwan, and M. A. Rahman, “Performances of fuzzy-logic-based indirect vector control for induction motor drive,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1219- 1225, Sept.-Oct. 2002.
[50] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, April 2007, pp. 806-820.
[51] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2806-2814, July. 2010.
[52] J. Cao and A. Emadi, “A new battery/ultraCapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, May 2011.
[53] H. Xiaoliang, T. Hiramatsu, and H. Yoichi, “Energy management strategy based on frequency-varying filter for the battery supercapacitor hybrid system of electric vehicles,” in Proc. IEEE EVS27, 2013, pp. 1-6.
[54] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, March 2017.
[55] H. H. Eldeeb, A. T. Elsayed, C. R. Lashway, and O. Mohammed, “Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2252-2262, June 2019.
[56] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, June 2008.
[57] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics -- lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSim, 2015, pp. 444-450.
[58] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, Oct. 2005.
[59] G. L. Bullard, H. B. Sierra-Alcazar, H. L. Lee, and J. L. Morris, “Operating principles of the ultracapacitor,” IEEE Trans. Magn., vol. 25, no. 1, pp. 102-106, Jan. 1989.
[60] Y. Parvini and A. Vahidi, “Optimal charging of ultracapacitors during regenerative braking,” in Proc. IEEE IEVC, 2012, pp. 1-6.
[61] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, Dec. 2012.
[62] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou, and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, March 2016.
D. DC/DC Converters
[63] M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications- polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, Feb. 2010.
[64] A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC–DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163-3172, May 2015.
[65] M. McDonough, “Integration of inductively coupled power transfer and hybrid energy storage system: a multiport power electronics interface for battery-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6423-6433, Nov. 2015.
[66] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC–DC converters for electric vehicles,” IEEE Trans. Industry Appl., vol. 51, no. 4, pp. 3442-3452, Aug. 2015.
[67] N. Oswald, P. Anthony, N. McNeill, and B. H. Stark, “An experimental investigation of the tradeoff between switching losses and EMI generation with hard-switched all-Si, Si-SiC, and all-SiC device combinations,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2393-2407, May 2014.
[68] Y. Takatsuka, H. Hara, K. Yamada, A. Maemura, and T. Kume, “A wide speed range high efficiency EV drive system using winding changeover technique and SiC devices,” in Proc. IEEE IPEC, 2014, pp. 1898-1903.
E. EV Charging Stations
[69] Texas Instruments, “Power topology considerations for electric vehicle charging stations,” Application Report, Sep. 2020.
[70] T. Soeiro, T. Friedli, and J. W. Kolar, “Three-phase high power factor mains interface concepts for electric vehicle battery charging systems,” in Proc. IEEE APEC, 2012, pp. 2603-2610.
[71] D. Aggeler, F. Canales, H. Zelaya-De La Parra, A. Coccia, N. Butcher, and O. Apeldoorn, “Ultra-fast DC-charge infrastructures for EV-mobility and future smart grids,” in Proc. IEEE PES, pp. 1-8, 2010.
[72] S. Rivera, B. Wu, S. Kouro, V. Yaramasu, and J. Wang, “Electric vehicle charging station using a neutral point clamped converter with bipolar DC bus,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 1999-2009, April 2015.
[73] N. D. Dao, D. Lee and Q. D. Phan, “High-efficiency SiC-based isolated three-port DC/DC converters for hybrid charging stations,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10455-10465, Oct. 2020.
F. Switch-mode Rectifiers
[74] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
[75] B. Singh, S. Singh, A. Chandra, and K. Al-Haddad, “Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 540-556, Nov. 2011.
[76] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[77] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013.
[78] T. Soeiro, T. Friedli, and J. W. Kolar, “Three-phase high power factor mains interface concepts for electric vehicle battery charging systems,” in Proc. IEEE APEC, 2012.
[79] G. Chen and K. M. Smedley, “Steady-state and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 355-362, April 2005.
[80] J. W. Kolar, H. Ertl, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM(VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[81] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, pp. 1329-1336.
[82] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for VIENNA-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, Nov. 2009.
[83] C. Wang, J. Liu, H. Cheng, Y. Zhuang, and Z. Zhao, “A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation,” Energies, vol. 12, no. 17, pp. 3375, Sep. 2019.
G. Isolation DC/DC Converters
[84] N. Mohan, T.M. Undeland, and W.P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Hersey: John Wiley & Sons, Inc., 2003.
[85] F. Krismer, J. Biela, and J. W. Kolar, “A comparative evaluation of isolated bi-directional DC/DC converters with wide input and output voltage range,” in Proc. IEEE IAS, 2005, pp. 599-606.
[86] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, March 2017.
[87] A. K. Jain and R. Ayyanar, “PWM control of dual active bridge: comprehensive analysis and experimental verification,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1215-1227, April 2011.
[88] M. N. Kheraluwala, R. W. Gascoigne, D. M. Divan, and E. D. Baumann, “Performance characterization of a high-power dual active bridge DC-to-DC converter,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1294-1301, Nov.-Dec. 1992.
[89] F. Krismer and J. W. Kolar, “Efficiency-optimized high-current dual active bridge converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745-2760, July 2012.
[90] J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” in Proc. IEEE APEC, 2001, pp. 728-735.
[91] Y. Nakakohara, H. Otake, T. M. Evans, T. Yoshida, M. Tsuruya, and K. Nakahara, “Three-phase LLC series resonant DC/DC converter using SiC MOSFETs to realize high-voltage and high-frequency operation,” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2103-2110, April 2016.
[92] M. Noah, S. Kimura, J. Imaoka, W. Martinez, S. Endo, M. Yamamoto and K. Umetani, “Magnetic design and experimental evaluation of a commercially available single integrated transformer in three-phase LLC resonant converter,” IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6190-6204, Nov.-Dec. 2018.
[93] S. A. Arshadi, M. Ordonez, W. Eberle, M. Craciun, and C. Botting, “Three-phase LLC battery charger: wide regulation and improved light-load operation,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1519-1531, Feb. 2021.
[94] E. Orietti, P. Mattavelli, G. Spiazzi, C. Adragna, and G. Gattavari, “Current sharing in three-phase LLC interleaved resonant converter,” in Proc. IEEE ECCE, 2009, pp. 1145- 1152.
[95] C. Fei, Q. Li, and F. C. Lee, “Digital implementation of adaptive synchronous rectifier (SR) driving scheme for high-frequency LLC converters with microcontroller,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 5351-5361, June 2018.
[96] S. A. Arshadi, M. Ordonez, W. Eberle, M. A. Saket, M. Craciun, and C. Botting, “Unbalanced three-phase LLC resonant converters: analysis and trigonometric current balancing,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2025-2038, March 2019.
H. Others
[97] “Digital signal controller TMS320F28379 data sheet,” Available: https://www.ti.com/lit/ds/ symlink/tms320f28379d.pdf, 2017.
[98] “Super-capacitor BMOD0006 E160 B02 data sheet,” Available: https://www.maxwell.com/ images/documents/160VModule_DS_3000246_6.pdf, 2019.
[99] H. Ding, “Design of resonant half-bridge converter using IRS2795(1,2) control IC,” International Rectifier Co., AN-1160 [Online]. Available:
http://www.irf.com/technical-info/appnotes/an-1160.pdf.
[100] W. Q. Huang, “Grid-connected electric vehicle induction motor drive system” M.S. thesis, Dept. Electr. Eng., Natl. Tsinghua Univ., Hsinchu, R.O.C., 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *