帳號:guest(3.138.36.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐唯哲
作者(外文):Hsu, Wei-Che
論文名稱(中文):射頻放電電源於低溫電漿滅菌應用
論文名稱(外文):Applications of Power Supply for RF Discharge in Low-Temperature Plasma Sterilization
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):余國瑞
吳毓恩
林景源
口試委員(外文):Yu, Gwo-Rue
Wu, Yu-En
Lin, Jing-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061507
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:94
中文關鍵詞:電漿射頻電漿電源低溫電漿滅菌法13.56 MHzClass-DLCC串並聯諧振電路E-mode HEMT GaN
外文關鍵詞:plasmaradio frequency (RF) plasma power supplylow temperature plasma sterilization method13.56 MHzClass-DLCC series-parallel resonant circuitE-mode HMET GaN
相關次數:
  • 推薦推薦:0
  • 點閱點閱:44
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在研製一部射頻電漿電源,利用射頻放電的模式激發電漿,完成低溫電漿滅菌。隨著醫療安全標準提高,醫療器材的無菌度是標準之一,目前主要的滅菌法有高溫、化學藥劑、放射性以及電漿滅菌法,經過比較之後,低溫電漿滅菌將成為未來滅菌的趨勢,其優點包括滅菌週期短,使醫療器材利用率提高;低溫即可達到滅菌效果,適用於不耐熱和不耐濕的醫療器材;市面上大多使用雙氧水(H_2 O_2)做為媒介進行滅菌動作,電漿激發後不會產生有毒之副產物,僅產生水和氧氣,是一套符合永續綠生活的滅菌法。
本論文研製一Class-D串並聯諧振換流器,做為射頻電漿電源,並持續輸出功率激發電漿,而電漿激發分為高壓與高頻兩種模式,本研究選用射頻13.56 MHz達到激發條件,因此選用增強型氮化鎵(E-mode HMET GaN)做為功率開關。為了減少切換損失,所以諧振頻率(f_r)必須小於操作頻率(f_s),用以達到軟切換的零電壓切換模式(ZVS)。
本論文採用兩種負載進行實測,分別為50 Ω純電阻和電漿腔體,前者測試電路的穩定性;後者則實測射頻電漿電源的功能性,以便後續系統整合。不過本論文選用射頻放電模式來激發電漿,必須在射頻電漿電源與電漿腔體之間加入阻抗匹配電路,避免反射功率產生,使輸出功率最大化地傳送至負載端。
本論文主要貢獻包含:(1)研製一輸出頻率為13.56 MHz之Class-D串並聯諧振換流器;(2)說明當電路操作在高頻環境下,如何選用適當的功率開關,並比較不同廠商所生產的增強型氮化鎵(E-mode HMET GaN))優缺點;(3)分析適用於高頻環境下的電路走線;(4)研製一Class-D諧振換流器,並成功激發電漿,完成射頻放電之低溫電漿滅菌所需的電漿電源。
The purpose of this research is to design and implement a radio frequency (RF) plasma power supply, which uses RF-discharge mode to excite plasma and achieve low-temperature plasma sterilization. With the improvement of medical standards, the sterilization of medical equipment is one of the standards. At present, the main sterilization methods include high temperature, chemical, radioactivity and plasma. After comparisons, low-temperature plasma will become the trend of sterilization in the future. Its advantages include a short sterilization cycle, which improves the utilization rate of medical equipment, and the sterilization effect at low temperature. Thus, it is suitable for equipment that is not heat-resistant and moisture-resistant. Currently, hydrogen peroxide (H_2 O_2) is mostly used in the market for sterilization. No toxic by-products will be produced after excitation, only water and oxygen. It is a set of sterilization methods in line with sustainable green life.
In this thesis, a Class-D series-parallel resonant converter is developed as a radio frequency (RF) plasma power supply, and it continuously outputs power to excite the plasma. The plasma excitation is divided into two modes: high voltage and high frequency. In this research, the radio frequency (RF) 13.56 MHz is used to achieve excitation condition, so the enhancement mode gallium nitride (E-mode HMET GaN) is selected as the power switch. In order to reduce switching loss, the resonant frequency (f_r) must be less than the switching frequency (f_s) to achieve zero voltage switching (ZVS).
Two types of loads are used for tests. One is 50 Ω pure resistance, the other is plasma chamber. The former tests the stability of the circuit and the latter tests the functionality of RF plasma power supply. However, the RF-discharge mode is used to excite the plasma, and a matching circuit must be added between the power supply and chamber to avoid the generation of reflected power and maximize the output power to the load.
The main contributions of this research include: (1) developing a Class-D series-parallel resonant converter, and generating 13.56 MHz AC power; (2) explaining how to select an appropriate power switch when the circuit operates at high-frequency, and comparing different advantages and disadvantages of enhancement mode gallium nitride (E-mode HMET GaN) produced by the manufacturer; (3) analyzing the suitable layout of PCB board when it uses in high frequency and (4) developing a Class-D resonant converter with plasma chamber as load, achieving the generation of plasma.
摘要 i
Abstract ii
誌謝 iv
總目錄 v
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 電漿起源 1
1.3 電漿應用 2
1.4 電漿源回顧 3
1.4.1 直流放電 4
1.4.2 脈衝型直流放電 5
1.4.3 射頻放電 5
1.5 滅菌法回顧 7
1.6 論文架構 10
第二章 系統架構與設計 11
2.1 功率放大器 11
2.2 Class-D換流器 14
2.2.1 動作原理 14
2.2.2 諧振槽選用 15
2.2.3 諧振參數推導 17
2.2.4 元件損耗推估 19
第三章 硬體周邊電路設計 21
3.1 輔助電源 21
3.2 石英振盪器 23
3.3 除頻電路 23
3.4 開關責任比率調控電路 25
3.5 訊號隔離電路 27
3.5.1 光耦合 27
3.5.2 數位隔離 28
3.6 開關驅動電路 30
3.7 同軸電纜(Coaxial cable) 32
3.8 負載 35
第四章 硬體電路設計 39
4.1 Class-D諧振換流器架構與規格 39
4.2 系統參數設計 40
4.2.1 功率開關 40
4.2.2 諧振電路計算 44
4.2.3 諧振電路選擇 46
4.2.4 怠滯時間 50
4.2.5 損耗推估 51
4.3 電路走線設計 54
4.3.1 電力級 55
4.3.2 訊號級 56
4.3.3 散熱裝置 59
4.4 阻抗匹配電路設計 59
4.4.1 腔體等效阻抗值 59
4.4.2 史密斯圖(Smith Chart) 62
第五章 實體電路測試與分析 64
5.1 實務考量 68
5.1.1 開關內部二極體 68
5.1.2 散熱裝置 69
5.2 模擬與實測驗證 72
5.2.1 50 Ω純電阻 73
5.2.2 電漿腔體 81
第六章 結論與未來展望 89
6.1 結論 89
6.2 未來研究方向 90
參考文獻 91
[1] J. Chien, R. Platt and A. Lemus, “Sterilization system with a plasma generator controlled by a digital signal processor,” U.S. Patent No. 20030059340A1.
[2]A. Jacob, “Process and apparatus for dry sterilization of medical devices and materials,” U.S. Patent No. US4818488A.
[3]P. T. Jacobs and S. Lin, “Hydrogen peroxide plasma sterilization system,” U.S. Patent No. 4756882A.
[4]F. Mehmood, T. Kamal and U. Ashraf, “Generation and applications of plasma (An Academic Review),” Preprints2018, 2018100061.
[5]H. Conrads and M. Schmidt, “Plasma generation and plasma sources,” Plasma Sources Science and Technology, vol. 9, no. 4, pp. 441-454, 2000.
[6]S. Eliezer and Y. Eliezer, “The fourth state of matter: an introduction to plasma science,” CRC Press, 2001.
[7]張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善,2006,電漿源原理與應用之介紹,物理雙月刊,28卷,2期,頁440-442,4月。
[8]黃俊凱、葉昌鑫、翁敏航、葉潔娃、張慎周、吳春森,2017,連續生產型超高頻電漿增強式鍍膜設備設計及其性能探討,科儀新知,210期,頁68-79,3月。
[9]吳韋霆,介電質空氣電漿光譜—微小化氣相層析偵測器,國立臺灣師範大學化學研究所,碩士論文,2016。
[10]A. E. Zhdanov, I. M. Pahomov and A. I. Ulybin, “Low-temperature plasma sterilization: using a sterilizing agent based on organic acids (SterAcidAgent^Ⓡ),” in 2019 E-Health and Bioengineering Conference – EHB, 2019, pp. 1-4.
[11]H. C. Baxter, A. Campbell, Patricia R. Richardson, Anita C. Jones, Ian R. Whittle, Mark Casey, A. Gavin Whittaker, and Robert L. Baxter, “Surgical instrument decontamination: efficacy of introducing an argon: oxygen RF gas-plasma cleaning step as part of the cleaning cycle for stainless steel instruments,” in IEEE Transactions on Plasma Science, vol. 34, no. 4, pp. 1337-1344, Aug. 2006.
[12]M. S. Noh, S. H. Jung, O. Kwon, S. I. Lee, S. J. Yang, E. Hahm, and B. H. Jun, “Evaluation of sterilization performance for vaporized-hydrogen-peroxide-based sterilizer with diverse controlled parameters,” in ACS Omega 2020, pp. 29382-29387, May 2020.
[13]N. S. Turker, A. Y. O ̈zer, B. Kutlu, R. Nohutcu, S. Colak, M. Ekizoglu, and M. O ̈zalp, “The effect of different sterilization method on polypropylene syringes,” Journal of Medical Devices, vol. 12, June 2018.
[14]周韋辰,內視鏡滅菌用射頻電漿源研製,國立清華大學電機工程學系碩士班電力組,碩士論文,2020。
[15]EPARC,電力電子學綜論,全華,2015。
[16]A. Oyane, T. Senanayake, F. Hattori, J. Imaoka, M. Yamamoto, and M. Masuda, “13.56 MHz high power half-bridge GaN-HEMT resonant inverter achieving 99% power efficiency,” in 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2020.
[17]M. K. Kazimierczuk and D. Czarkowski, “Resonant Power Converters, 2nd Edition,” New York: Wiley, John & Sons, Inc., 2012.
[18]M. K. Kazimierczuk, N. Thirunarayan and S. Wang, "Analysis of series-parallel resonant converter," in IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 1, pp. 88-99, Jan. 1993.
[19]LRS-35-24 Data sheet, MEAN WELL Inc., 2020.
[20]SRS-2405 Data sheet, MEAN WELL Inc., 2021.
[21]SRS-2409 Data sheet, MEAN WELL Inc., 2021.
[22]EP1100HSTSC-27.120M Data sheet, Ecliptek Inc., 2005.
[23]SN74ACT74 Data sheet, Texas Instruments Inc., 2003.
[24]Si8610BC-B-IS Data sheet, Silicon Labs Inc., 2019.
[25]LM5114B Data sheet, Texas Instruments Inc., 2015.
[26]GN010 Application Note, “EZDrive^Ⓡ Power stage solution for GaN systems’ GaN transistor,” GaN Systems Inc., July 2021.
[27]GN012 Application Note, “Gate driver circuit design with GaN E-HEMTs,” GaN Systems Inc., Feb. 2021.
[28]B. Zojer, “Driving CoolGaN^TM 600 V high electron mobility transistors,” Infineon Technologies AG., 2021.
[29]1000-T-FN Data sheet, Bird Inc., 2021.
[30]R. Ludwig, P. Bretchko, “RF circuit design: theory and application,” Prentice Hall Inc., 2000.
[31]吳啟賓,射頻高功率換流器於低溫電漿滅菌應用,國立清華大學電機系碩士班電力組,碩士論文,2021。
[32]CESA1312 Data sheet, Advanced Energy Inc., 2018.
[33]User Manual AE VarioMatch^TM Match Network, VM 1000/1500 Platform, Advanced Energy Inc., Oct. 2009.
[34]GaN systems 官網:https://gansystems.com/
[35]德州儀器(Texas Instruments, TI)官網:https://www.ti.com/
[36]宜特(EPC)官網:https://epc-co.com/epc/tw/
[37]英飛凌(Infineon)官網:https://www.infineon.com/cms/en/
[38]IGT40R070D1 Data sheet, Infineon Inc., 2021.
[39]IGT60R070D1 Data sheet, Infineon Inc., 2021.
[40]IGO60R070D1 Data sheet, Infineon Inc., 2020.
[41]T72-6 Data sheet, Micrometals Inc., 2019.
[42]ATC 100E Data sheet, AVX Inc., 2017.
[43]村田製作所(Murata)官網:https://ds.murata.co.jp/simsurfing/mlcc.html?lcid=en-us&jis=false&md5=afc6825576efe25956ddbd8839bf7d85
[44]IPC-2221A Generic Standard on Printed Board Design, IPC International Inc., Feb. 1998.
[45]蔡政憲,防護線對高速數位信號在板級的電磁干擾影響探討,國立交通大學電機學院碩士在職專班電機與控制組,碩士論文,2009。
[46]B. Strothmann, T. Piepenbrock, F. Schafmeister, and J. Bo ̈cker, “Heat dissipation strategies for silicon carbide power SMDs and their use in different applicaions,” in PCIM Europe digital days 2020, July 2020.
[47]史密斯圖使用方法。
網站:https://www.strongpilab.com/smith-chart-how-to-use/
[48]線上史密斯圖。
網站:https://www.will-kelsey.com/smith_chart/
(此全文20270802後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *