|
[1] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 704–718, 2007. [2] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010. [3] A. Emadi, Y. J. Lee, and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 2237–2245, 2008. [4] A. M. Lulhe and T. N. Date, “A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV),” in Proc. IEEE ICCICCT, 2015. [5] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015. [6] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 3-10, 2013. [7] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879. [8] W. Wang, X. Chen, and J. Wang, “Motor/generator applications in electrified vehicle chassis—a survey,” IEEE Trans. Transport. Electrific., vol. 5, no. 3, pp. 584-601, 2019. [9] K. Zhou and D. Wang, “Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 186–196, 2002. [10] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49–61, 1999. [11] K. Sun, Q. Wei, L. Huang, and K. Matsuse, “An overmodulation method for PWM- inverter-fed IPMSM drive with single current sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3395–3404, 2010. [12] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006. [13] M. S. Rafaq and J. Jung, “A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4747-4758, 2020. [14] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001. [15] F. Morel, X. Lin-Shi, J. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009. [16] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shieh, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp Electron. Syst., vol. 47, no. 1, pp. 58–74, 2011. [17] Y. Inoue, S. Morimoto, and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159–166, 2010. [18] L. Tang, L. Zhong, M. F. Rahman, and Y. Hu, “A novel direct torque control for interior permanent magnet synchronous machine drive system with low ripple in torque and flux—a speed sensorless approach,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1748–1756, 2003. [19] D. Mohan, X. Zhang, and G. H. B. Foo, “Three-level inverter-fed direct torque control of IPMSM constant switching frequency and torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7908–7918, 2016. [20] S. Morimoto, M. Sanada, and Y. Takeda, “Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 30, no. 6, pp. 1632–1637, 1994. [21] Y.-D. Yoon, W.-J. Lee, and S.-K. Sul, “New flux weakening control for high saliency interior permanent magnet synchronous machine without any tables,” in Proc. Eur. Conf. Power Electron. Appl., 2007, pp. 1–7. [22] Z. Huang, C. Lin, and J. Xing, ‘‘A parameter-independent optimal field-weakening control strategy of IPMSM for electric vehicles over full speed range,’’ IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4659–4671, 2021. [23] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016. [24] S. Tenner, S. Gunther, and W. Hofmann, “Loss minimization of electric drive systems using a dc/dc converter and an optimized battery voltage in automotive applications,” in Proc. IEEE VPPC, 2011, pp. 1–7. [25] S. Xiao, X. Gu, Z. Wang, T. Shi, and C. Xia, ‘‘A novel variable DC-link voltage control method for PMSM driven by a quasi-Z-source inverter,’’ IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3878–3890, 2020. [26] M. Farhadi and O. Mohammed, “Energy storage technologies for high-power applications,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 1953-1961, 2016. [27] F. Nadeem, S. S. Hussain, P. K. Tiwari, A. K. Goswami, and T. S. Ustun, “Comparative review of energy storage systems, their roles, and impacts on future power systems,” IEEE Access, vol. 7, pp. 4555–4585, 2018. [28] Behnam Zakeri, Sanna Syri, “Electrical energy storage systems: a comparative life cycle cost analysis,” Renewable and Sustainable Energy Reviews, vol.42, pp.569, 2015. [29] M. O. Badawy and Y. Sozer, “A partial power processing of battery/ultracapacitor hybrid energy storage system for electric vehicles,” in Proc. IEEE APEC, Charlotte, NC, USA, 2015, pp. 3162–3168. [30] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012. [31] H. Yoo, S. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008. [32] M. O. Badawy, T. Husain, Y. Sozer, and J. A. De Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5810-5819, 2017. [33] C. Zheng, W. Li, and Q. Liang, “An energy management strategy of hybrid energy storage systems for electric vehicle applications,’’ IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1880-1888, 2018. [34] S. Sul, Y. Kwon, and Y. Lee, “Sensorless control of IPMSM for last 10 years and next 5 years,” CES Trans. Electr. Mach. Syst., vol. 1, no. 2, pp. 91–99, 2017. [35] G. Wang, M. Valla, and J. Solsona, “Position sensorless permanent magnet synchronous machine drives—a review,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5830–5842, 2020. [36] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011. [37] Muhammad Saad Rafaq and Jin-Woo Jung, “A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4747-4758, 2020. [38] M. S. Rafaq, F. Mwasilu, J. Kim, H. H. Choi, and J. Jung, “Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4631-4643, 2017. [39] J. Jang, J. Ha, M. Ohto, K. Ide, and S.-K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004. [40] S. Kim, J. I. Ha, and S. K. Sul, “PWM switching frequency signal injection sensorless method in IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 5, 2012 [41] G. Wang, R. Yang, and D. Xu, “DSP-based control of sensorless IPMSM drives for wide- speed-range operation,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 720–727, 2013. [42] D. Diaz Reigosa, D. Fernandez, H. Yoshida, T. Kato, and F. Briz, “Permanent-magnet temperature estimation in PMSMs using pulsating high-frequency current injection,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3159–3168, 2015. [43] N. C. Park and S. H. Kim, “Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,” IET Electr. Power Appl., vol. 8, no. 2, pp. 68-75, 2014. [44] Y. D. Yoon, S. K. Sul, S. Morimoto, and K. Ide, “High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011. [45] Y. Zhao, Z. Zhang, C. Ma, W. Qiao, and L. Qu, “Sensorless control of surface-mounted permanent-magnet synchronous machines for low-speed operation based on high-frequency square-wave voltage injection,” in Proc. IEEE IAS, 2013, pp. 1-8. [46] C. Hwang, Y. Lee, and S. Sul, “Analysis on position estimation error in position-sensorless operation of IPMSM using pulsating square wave signal injection,” IEEE Trans. Ind. Appl., vol. 55, no. 1, pp. 458–470, 2019. [47] Y. Zhao, W. Qiao, and L. Wu, “Position extraction from a discrete sliding-mode observer for sensorless control of IPMSMs,” in Proc. IEEE ISIE, pp.1- 7, 2012. [48] F. Chen, X. Jiang, X. Ding and C. Lin, “FPGA-based sensorless PMSM speed control using adaptive sliding mode observer,” in Proc. IEEE IECON, 2017. [49] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012. [50] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054–1061, 2002. [51] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288–295, 2003. [52] A. Kulkarni and M. Ehsani, “A novel position sensor elimination technique for the interior permanent-magnet synchronous drive,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 144–150, 1992. [53] C. Silva, G. M. Asher, and M. Sumner, ‘‘Hybrid rotor position observer for wide speed- range sensorless PM motor drives including zero speed,’’ IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 373–378, 2006. [54] H. Zhang, W. Liu, Z. Chen, and N. Jiao, “An overall system delay compensation method for IPMSM sensorless drives in rail transit applications,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1316–1329, 2021. [55] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767. [56] Yves Mollet and Johan Gyselinck, “Mechanical-state estimator for doubly-fed induction generators application to encoder-fault tolerance and sensorless control,” in Proc. IEEE ICEM, 2014, pp. 1-7. [57] Akrad, D. Diallo, and M. Hilairet, “Design of a fault-tolerant controller based on observers for a PMSM drive,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1416–1427, 2011. [58] G. H. B Foo, X. Zhang, and D. M. Vilathgamuwa, “A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3485–3495, 2013. [59] M. Schweizer, T. Friedli, and J. W. Kolar, “Comparative evaluation of advanced three-phase three-level inverter/converter topologies against two-level systems,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5515-5527, 2013. [60] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique, and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013. [61] B. Sahan, S. V. Araújo, C. Nöding, and P. Zacharias, “Comparative evaluation of three- phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011. [62] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013. [63] S. J. Chiang and C. M. Liaw, “A single-phase three-wire transformerless inverter,” IEE Proc. Electron. Power Appl., vol. 141, no. 4, pp. 197-205, 1994. [64] J. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems—part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176– 198, 2013. [65] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014. [66] R. L. Alves, C. H. I. Font, and I. Barbi, “A novel unidirectional hybrid three-phase rectifier system employing boost topology,” in Proc. IEEE. PESC, 2005, pp. 487–493. [67] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high power telecommunications rectifiers modules,” IEEE Trans. Ind. Electron., vol. 44, pp. 456–467, 1997. [68] T. B. Soeiro and J. W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589–3601, 2013. [69] A. Khaligh and M. D. Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, 2019. [70] L. Wang, Z. Qin, T. Slangen, P. Bauer, and T. van Wijk, “Grid impact of electric vehicle fast charging stations: trends, standards, issues and mitigation measures—an overview,” IEEE Open J. Power Electron., vol. 2, pp. 56–74, 2021. [71] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proc. IEEE, vol. 101, no. 11, pp. 2409–2427, 2013. [72] J. C. Mukherjee and A. Gupta, “A review of charge scheduling of electric vehicles in smart grid,” IEEE Syst. J., vol. 9, no. 4, pp. 1541–1553, 2015. [73] Y. C. Hsu, S. C. Kao, C. Y. Ho, P. H. Jhou, M. Z. Lu, and C. M. Liaw, “On an electric scooter with G2V/V2H/V2G and energy harvesting functions,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6910-6925, 2018. [74] M. Kwon and S. Choi, “An electrolytic capacitorless bidirectional EV charger for V2G and V2H applications,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6792-6799, 2016. [75] H. N. de Melo, J. P. F. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A controllable bidirectional battery charger for electric vehicles with vehicle-to-grid capability,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 114-123, 2018. [76] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A new single-phase PLL structure based on second order generalized integrator,” in Proc. IEEE PESC, 2006, pp. 1511–1516. [77] P. Rodriguez, A. Luna, I. Candela, R. Teodorescu, and F. Blaabjerg, “Grid synchronization of power converters using multiple second order generalized integrators,” in Proc. IEEE IEAC, Orlando, FL, USA, 2008, pp. 755–760. [78] M. Karimi-Ghartemani, S. A. Khajehoddin, P. K. Jain, A. Bakhshai, and M. Mojiri, “Addressing DC component in PLL and notch filter algorithms,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 78–86, 2012. [79] S. K. Chung, “A phase tracking system for three phase utility interface inverters,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 431-438, 2000. [80] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Three-phase PLLs: a review of recent advances,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1894–1907, 2017. [81] P. Rodriguez, A. Luna, and I. Candela, “Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 127–138, 2011. [82] D. Zammit, C. S. Staines, and M. Apap, “Comparison between PI and PR current controllers in grid connected PV inverters,” Int. J. Electr. Robot. Electron. Commun. Eng., vol. 8, pp. 221–226, 2014 [83] R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control structure for grid- connected LCL PV inverters with zero steady-state error and selective harmonic compensation,” in Proc. IEEE APEC, 2004, pp. 580-586. [84] Sertac Bayhan, “a power flow control approach for grid-tied photovoltaic system with an integrated EV battery,” in Proc. IEEE CPE-PE, vol. 1, pp. 497-501, 2020. [85] C. Schuss, B. Eichberger, and T. Rahkonen, “A monitoring system for the use of solar energy in electric and hybrid electric vehicles,” in Proc. IEEE IMTC, 2012, pp. 524–527. [86] C. Schuss, T. Fabritius, B. Eichberger, and T. Rahkonen, “Impacts on the output power of photovoltaics on top of electric and hybrid electric vehicles,” IEEE Trans. Instrum. Meas., vol. 69, no. 5, pp. 2449-2458, 2020. [87] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for VIENNA-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, 2009. [88] C. Qiao and K. M. Smedley, “Three-phase unity-power-factor star-connected switch (VIENNA) rectifier with unified constant-frequency integration control,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 952–957, 2003. [89] J. S. Lee and K. B. Lee, “Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4075-4084, 2016. [90] J. Deng, S. Li, S. Hu, C. C. Mi, and R. Ma, “Design methodology of LLC resonant converters for electric vehicle battery chargers,” IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1581–1592, 2014. [91] J. Jung, H. Kim, M. Ryu, and J. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, 2013. [92] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. Lai, “Design of bidirectional DC-DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, 2015. Half-bridge CLLC resonant converter [93] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC-DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, 2017. [94] S. Zou, J. Lu, A. Mallik, and A. Khaligh, “Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 998- 1005, 2018. [95] C. Zhang, P. Li, Z. Kan, X. Chai, and X. Guo, “Integrated half-bridge CLLC bidirectional converter for energy storage systems,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3879–3889, 2018. [96] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti.com/lit/ds/ symlink/tms320f28335.pdf, 2016. [97] H. C. Miao, “A varied voltage DC-link EV PMSM drive with bidirectional grid-connected capability,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2021. [98] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 2nd ed. New York: Wiley-IEEE, 2002. [99] “Comparative characteristics of batteries,” Available: https://leadcrystalbatteries.com/lead- crystal-battery-performance, 2019. [100] “Super-capacitor BMOD0006 E160 B02 data sheet,” Available: https://www.maxwell.com/ images/documents/160VModule_DS_3000246_6.pdf, 2019.
|