帳號:guest(18.222.116.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳佑辰
作者(外文):Wu, Yu-Chen
論文名稱(中文):具併網和能源收集輔助充電功能之電動車永磁同步馬達驅動系統
論文名稱(外文):AN EV PMSM DRIVE WITH GRID-CONNECTED AND HARVESTED ENERGY AUXILIARY CHARGING FUNCTIONS
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):徐國鎧
曾萬存
口試委員(外文):Shyu, Kuo-Kai
Tseng, Wan-Tsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061506
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:188
中文關鍵詞:電動車內置式永磁同步馬達無位置感測高頻注入蓄電池超電容介面轉換器CLLC諧振轉換器切換式整流器變頻器電網至車輛車輛至電網車輛至家庭能源收集
外文關鍵詞:EVIPMSMposition sensorlessHFIbatterysupercapacitorinterface converterCLLC resonant converterswitch-mode rectifierinverterG2VV2GV2Henergy harvesting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:137
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發一具併網和能源收集輔助充電功能之電動車內置式永磁同步馬達驅動系統。標準與無位置感測控制馬達驅動系統均經建構和評估。馬達驅動系統之直流鏈電壓,由蓄電池與超電容經各自之雙向升/降壓介面轉換器建立。主供能之蓄電池採用兩臂交錯式轉換器,以具故障容錯能力,超電容則選用單臂轉換器。經由合宜之能源管理策略,功率型超電容可協助馬達在加速時迅速提供能量。反之,在減速時,回收之再生煞車動能可有效地對超電容充電。
首先,研製標準馬達驅動系統,由實測結果驗證其驅動性能,藉由變動直流鏈電壓之效能提升將證實之。此外,探究換相移位對系統效率提升之有效性。接著,建構並比較評估弦波和方波高頻注入無位置感測電動車馬達驅動系統。當位置感測器發生故障時,可即時無縫地由標準控制切換為無位置感測控制,使馬達驅動系統維持正常運轉。
當電動車於閒置時,使用馬達驅動系統既有元件可執行雙向隔離併網操作。電氣隔離係應用全橋式CLLC諧振轉換器達成。在電網至車輛模式中,馬達驅動變頻器操作成切換式整流器,由單相或三相市電對蓄電池充電。在車輛至電網及家庭模式中,車上蓄電池可供電至市電及家用負載,亦可改善電網側之電力品質。
最後,所開發之電動車驅動系統配備兩種能源收集機構。一為車頂太陽光伏能源收集器,太陽能板可於任何狀況下經過升壓直流/直流轉換器直接對蓄電池充電。另為插入式能源收集器,以三相維也納切換式整流器為基礎電路,在車輛閒置時,將可收集之三相交流、單相交流或直流電源對車上蓄電池進行輔助充電。
This thesis presents an electric vehicle (EV) interior permanent-magnet synchronous motor (IPMSM) drive with grid-connected and harvested energy auxiliary charging functions. Both standard and position sensorless controlled motor drives are established and evaluated. The motor drive DC-link voltage is established by the battery and the supercapacitor (SC) via bidirectional boost/buck interface converters. The interleaved converter with two cells is adopted for the battery main source to possess the fault-tolerant capability, whereas the single-cell converter is equipped for the SC bank. Through proper energy management control, the power-type storage device SC can quickly discharge to assist the EV in rapid acceleration. Conversely during deceleration, the kinetic energy recovered from regenerative braking can effectively charge the SC.
First, the standard EV IPMSM drive is designed and implemented. Its driving performance is verified experimentally. The performance enhancement via adjustable DC-link voltage is demonstrated. In addition, the effectiveness of commutation advanced shift on the system efficiency enhancement is also explored in detail. Next, the sine-wave and square-wave high-frequency injection (HFI) position sensorless EV IPMSM drive are comparatively evaluated. The seamless transfer from the standard to position sensorless controlled EV IPMSM drive can be achieved as the position sensor failure is detected.
When the EV is in idle mode, the bidirectional grid-connected operations can be conducted using the embedded motor drive components. The galvanic isolation is achieved using a full-bridge CLLC resonant converter. The motor drive inverter is operated as a switch-mode rectifier (SMR) and the battery can be charged from the single-phase or three-phase mains. In single-phase vehicle-to-grid (V2G) and vehicle-to-home (V2H) operations, the EV battery can not only power the utility grid and home appliances but also improve the power quality on the grid-side.
Finally, two energy harvesting mechanisms are equipped in the developed EV drive. One is car-roof photovoltaic (PV) energy harvester, the battery can be directly charged by the PV under any conditions via a boost DC/DC converter. As to the other is plug-in energy harvester, a three-phase Vienna SMR is used as the basic schematic. In idle mode, the three-phase AC, single-phase AC or DC source can be inputted to charge the battery.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xx
LIST OF SYMBOLS xxii
LIST OF ABBREVIATIONS xxxiv
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 SOME TECHNOLOGIES RELATED TO ELECTRIC VEHICLES 6
2.1 Introduction 6
2.2 Introduction to PMSMs 6
2.2.1 Motor Structures 6
2.2.2 Voltage and Torque Equations 7
2.2.3 Parameter Estimation of the Employed PMSM 10
2.2.4 Commutation Shift 12
2.3 Energy Storage Devices for EV Drives 13
2.3.1 Li-ion Battery 14
2.3.2 Supercapacitor 15
2.3.3 Possible Interconnected Schematics of Battery/SC Hybrid Powered System 15
2.4 Interface Converters 16
2.4.1 DC/DC Converters 16
2.4.2 Switch-mode Rectifiers 19
2.4.3 Single-phase Three-wire Inverters 20
2.5 Classifications and Power Control Units of Electric Vehicles 22
2.6 G2V/V2G/V2H Operations and EV Chargers 25
2.7 Some Key Controls of an EV IPMSM Drive 27
CHAPTER 3 STANDARD BATTERY/SC POWERED EV IPMSM DRIVE 28
3.1 Introduction 28
3.2 System Configuration of the Established EV IPMSM Drive 28
3.2.1 Digital Control Environment 30
3.3 DC Source Powered EV IPMSM Drive 30
3.3.1 Power Circuit 30
3.3.2 Control Schemes 31
3.3.3 Measured Results 37
3.4 Battery Interface DC/DC Converter 44
3.4.1 Power Circuit 45
3.4.2 Control Schemes 46
3.4.3 Performance Evaluation 53
3.5 Evaluation of the Battery Powered EV IPMSM Drive 56
3.5.1 Programmed Speed Pattern Evaluation 56
3.5.2 Effectiveness of Adjustable DC-link Voltage 57
3.6 Supercapacitor Interface Converter 62
3.6.1 Estimated Equivalent Circuit Parameter of SC 63
3.6.2 Power Circuit 66
3.6.3 Control Schemes 67
3.6.4 Experimental Performance Evaluation 69
3.7 Battery/SC Powered EV IPMSM Drive 70
3.7.1 Hybrid Energy Operation Management 70
3.7.2 Experimental Verification 73
CHAPTER 4 HIGH-FREQUENCY SIGNAL INJECTED SENSORLESS EV IPMSM DRIVES 76
4.1 Introduction 76
4.2 Sine-wave HFI Position Sensorless EV IPMSM Drive 76
4.2.1 Comparative D-axis and Q-axis Injection Characteristics 76
4.2.2 Comparative Current Characteristics of D-axis and Q-axis Injections 78
4.2.3 D-axis Injected Sine-wave HFI Position Sensorless EV IPMSM Drive 80
4.3 Square-wave HFI Position Sensorless EV IPMSM Drive 84
4.4 Comparative Performance Evaluation for Sine-wave and Square-wave HFI Position Sensorless EV IPMSM Drives 88
4.5 Fault-tolerant Operation Under Position Sensor Failure 104
CHAPTER 5 G2V/V2G/V2H OPERATIONS WITH GALVANIC ISOLATION 112
5.1 Introduction 112
5.2 Bidirectional CLLC Resonant Converter 112
5.2.1 Circuit Operation 112
5.2.2 Design of System Components 117
5.2.3 Control Schemes 120
5.2.4 Measured Results 120
5.3 Single-phase/Three-phase G2V Charging Operations 122
5.3.1 Single-phase G2V Operation 122
5.3.2 Three-phase G2V Operation 130
5.4 Single-phase V2H and V2G Discharging Operations 135
5.4.1 System Configuration 135
5.4.2 1P3W Inverter 136
5.4.3 V2H Operation 139
5.4.4 V2G Operation 144
5.5 Three-phase V2H Discharging Operation 152
5.5.1 System Configuration 152
5.5.2 3P3W Inverter 154
5.5.3 Measured Results 154
CHAPTER 6 ENERGY HARVESTING FOR AUXILIARY CHARGING 156
6.1 Introduction 156
6.2 System Configuration 156
6.3 Car-Roof PV Energy Harvester 156
6.3.1 Power Circuit 157
6.3.2 Control Schemes 158
6.3.3 Measured Results 159
6.4 Plug-in Energy Harvester 159
6.4.1 Power Circuit 159
6.4.2 Plug-in Energy Harvester with Three-phase AC Input 160
6.4.3 Plug-in Energy Harvester with Single-phase AC Input 172
6.4.2 Plug-in Energy Harvester with DC source Input 177
CHAPTER 7 CONCLUSIONS 180
REFERENCES 181
[1] C. C. Chan, “The state of the art of electric, hybrid, and fuel cell vehicles,” Proc. IEEE, vol. 95, no. 4, pp. 704–718, 2007.
[2] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
[3] A. Emadi, Y. J. Lee, and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 2237–2245, 2008.
[4] A. M. Lulhe and T. N. Date, “A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV),” in Proc. IEEE ICCICCT, 2015.
[5] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[6] K. Rajashekara, “Present status and future trends in electric vehicle propulsion technologies,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 1, no. 1, pp. 3-10, 2013.
[7] M. Arata, Y. Kurihara, D. Misu, and M. Matsubara, “EV and HEV motor development in TOSHIBA,” in Proc. IEEE IPEC, 2014, pp. 1874-1879.
[8] W. Wang, X. Chen, and J. Wang, “Motor/generator applications in electrified vehicle chassis—a survey,” IEEE Trans. Transport. Electrific., vol. 5, no. 3, pp. 584-601, 2019.
[9] K. Zhou and D. Wang, “Relationship between space-vector modulation and three-phase carrier-based PWM: a comprehensive analysis,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 186–196, 2002.
[10] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49–61, 1999.
[11] K. Sun, Q. Wei, L. Huang, and K. Matsuse, “An overmodulation method for PWM- inverter-fed IPMSM drive with single current sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3395–3404, 2010.
[12] J. Y. Lee, S. H. Lee, G. H. Lee, J. P. Hong, and J. Hur, “Determination of parameters considering magnetic nonlinearity in an interior permanent magnet synchronous motor,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1303-1306, 2006.
[13] M. S. Rafaq and J. Jung, “A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Inform., vol. 16, no. 7, pp. 4747-4758, 2020.
[14] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[15] F. Morel, X. Lin-Shi, J. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
[16] M. C. Chou, C. M. Liaw, S. B. Chien, F. H. Shieh, J. R. Tsai, and H. C. Chang, “Robust current and torque controls for PMSM driven satellite reaction wheel,” IEEE Trans. Aerosp Electron. Syst., vol. 47, no. 1, pp. 58–74, 2011.
[17] Y. Inoue, S. Morimoto, and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159–166, 2010.
[18] L. Tang, L. Zhong, M. F. Rahman, and Y. Hu, “A novel direct torque control for interior permanent magnet synchronous machine drive system with low ripple in torque and flux—a speed sensorless approach,” IEEE Trans. Ind. Appl., vol. 39, no. 6, pp. 1748–1756, 2003.
[19] D. Mohan, X. Zhang, and G. H. B. Foo, “Three-level inverter-fed direct torque control of IPMSM constant switching frequency and torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7908–7918, 2016.
[20] S. Morimoto, M. Sanada, and Y. Takeda, “Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives,” IEEE Trans. Ind. Appl., vol. 30, no. 6, pp. 1632–1637, 1994.
[21] Y.-D. Yoon, W.-J. Lee, and S.-K. Sul, “New flux weakening control for high saliency interior permanent magnet synchronous machine without any tables,” in Proc. Eur. Conf. Power Electron. Appl., 2007, pp. 1–7.
[22] Z. Huang, C. Lin, and J. Xing, ‘‘A parameter-independent optimal field-weakening control strategy of IPMSM for electric vehicles over full speed range,’’ IEEE Trans. Power Electron., vol. 36, no. 4, pp. 4659–4671, 2021.
[23] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016.
[24] S. Tenner, S. Gunther, and W. Hofmann, “Loss minimization of electric drive systems using a dc/dc converter and an optimized battery voltage in automotive applications,” in Proc. IEEE VPPC, 2011, pp. 1–7.
[25] S. Xiao, X. Gu, Z. Wang, T. Shi, and C. Xia, ‘‘A novel variable DC-link voltage control method for PMSM driven by a quasi-Z-source inverter,’’ IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3878–3890, 2020.
[26] M. Farhadi and O. Mohammed, “Energy storage technologies for high-power applications,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 1953-1961, 2016.
[27] F. Nadeem, S. S. Hussain, P. K. Tiwari, A. K. Goswami, and T. S. Ustun, “Comparative review of energy storage systems, their roles, and impacts on future power systems,” IEEE Access, vol. 7, pp. 4555–4585, 2018.
[28] Behnam Zakeri, Sanna Syri, “Electrical energy storage systems: a comparative life cycle cost analysis,” Renewable and Sustainable Energy Reviews, vol.42, pp.569, 2015.
[29] M. O. Badawy and Y. Sozer, “A partial power processing of battery/ultracapacitor hybrid energy storage system for electric vehicles,” in Proc. IEEE APEC, Charlotte, NC, USA, 2015, pp. 3162–3168.
[30] J. Cao and A. Emadi, “A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 122-132, 2012.
[31] H. Yoo, S. Sul, Y. Park, and J. Jeong, “System integration and power-flow management for a series hybrid electric vehicle using supercapacitors and batteries,” IEEE Trans. Ind. Appl., vol. 44, no. 1, pp. 108-114, 2008.
[32] M. O. Badawy, T. Husain, Y. Sozer, and J. A. De Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5810-5819, 2017.
[33] C. Zheng, W. Li, and Q. Liang, “An energy management strategy of hybrid energy storage systems for electric vehicle applications,’’ IEEE Trans. Sustain. Energy, vol. 9, no. 4, pp. 1880-1888, 2018.
[34] S. Sul, Y. Kwon, and Y. Lee, “Sensorless control of IPMSM for last 10 years and next 5 years,” CES Trans. Electr. Mach. Syst., vol. 1, no. 2, pp. 91–99, 2017.
[35] G. Wang, M. Valla, and J. Solsona, “Position sensorless permanent magnet synchronous machine drives—a review,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5830–5842, 2020.
[36] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of sensorless IPMSM drives in a low-speed region using online parameter identification,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 798-804, 2011.
[37] Muhammad Saad Rafaq and Jin-Woo Jung, “A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range,” IEEE Trans. Ind. Informat., vol. 16, no. 7, pp. 4747-4758, 2020.
[38] M. S. Rafaq, F. Mwasilu, J. Kim, H. H. Choi, and J. Jung, “Online parameter identification for model-based sensorless control of interior permanent magnet synchronous machine,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4631-4643, 2017.
[39] J. Jang, J. Ha, M. Ohto, K. Ide, and S.-K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
[40] S. Kim, J. I. Ha, and S. K. Sul, “PWM switching frequency signal injection sensorless method in IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 5, 2012
[41] G. Wang, R. Yang, and D. Xu, “DSP-based control of sensorless IPMSM drives for wide- speed-range operation,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 720–727, 2013.
[42] D. Diaz Reigosa, D. Fernandez, H. Yoshida, T. Kato, and F. Briz, “Permanent-magnet temperature estimation in PMSMs using pulsating high-frequency current injection,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3159–3168, 2015.
[43] N. C. Park and S. H. Kim, “Simple sensorless algorithm for interior permanent magnet synchronous motors based on high-frequency voltage injection method,” IET Electr. Power Appl., vol. 8, no. 2, pp. 68-75, 2014.
[44] Y. D. Yoon, S. K. Sul, S. Morimoto, and K. Ide, “High-bandwidth sensorless algorithm for AC machines based on square-wave-type voltage injection,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1361-1370, 2011.
[45] Y. Zhao, Z. Zhang, C. Ma, W. Qiao, and L. Qu, “Sensorless control of surface-mounted permanent-magnet synchronous machines for low-speed operation based on high-frequency square-wave voltage injection,” in Proc. IEEE IAS, 2013, pp. 1-8.
[46] C. Hwang, Y. Lee, and S. Sul, “Analysis on position estimation error in position-sensorless operation of IPMSM using pulsating square wave signal injection,” IEEE Trans. Ind. Appl., vol. 55, no. 1, pp. 458–470, 2019.
[47] Y. Zhao, W. Qiao, and L. Wu, “Position extraction from a discrete sliding-mode observer for sensorless control of IPMSMs,” in Proc. IEEE ISIE, pp.1- 7, 2012.
[48] F. Chen, X. Jiang, X. Ding and C. Lin, “FPGA-based sensorless PMSM speed control using adaptive sliding mode observer,” in Proc. IEEE IECON, 2017.
[49] S. Po-ngam and S. Sangwongwanich, “Stability and dynamic performance improvement of adaptive full-order observers for sensorless PMSM drive,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 588-600, 2012.
[50] S. Morimoto, K. Kawamoto, M. Sanada, and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054–1061, 2002.
[51] Z. Chen, M. Tomita, S. Doki, and S. Okuma, “An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 50, no. 2, pp. 288–295, 2003.
[52] A. Kulkarni and M. Ehsani, “A novel position sensor elimination technique for the interior permanent-magnet synchronous drive,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 144–150, 1992.
[53] C. Silva, G. M. Asher, and M. Sumner, ‘‘Hybrid rotor position observer for wide speed- range sensorless PM motor drives including zero speed,’’ IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 373–378, 2006.
[54] H. Zhang, W. Liu, Z. Chen, and N. Jiao, “An overall system delay compensation method for IPMSM sensorless drives in rail transit applications,” IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1316–1329, 2021.
[55] I. Hideaki, I. Masanobu, K. Takeshi, and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
[56] Yves Mollet and Johan Gyselinck, “Mechanical-state estimator for doubly-fed induction generators application to encoder-fault tolerance and sensorless control,” in Proc. IEEE ICEM, 2014, pp. 1-7.
[57] Akrad, D. Diallo, and M. Hilairet, “Design of a fault-tolerant controller based on observers for a PMSM drive,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1416–1427, 2011.
[58] G. H. B Foo, X. Zhang, and D. M. Vilathgamuwa, “A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3485–3495, 2013.
[59] M. Schweizer, T. Friedli, and J. W. Kolar, “Comparative evaluation of advanced three-phase three-level inverter/converter topologies against two-level systems,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5515-5527, 2013.
[60] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique, and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
[61] B. Sahan, S. V. Araújo, C. Nöding, and P. Zacharias, “Comparative evaluation of three- phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
[62] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
[63] S. J. Chiang and C. M. Liaw, “A single-phase three-wire transformerless inverter,” IEE Proc. Electron. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[64] J. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems—part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176– 198, 2013.
[65] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems—part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[66] R. L. Alves, C. H. I. Font, and I. Barbi, “A novel unidirectional hybrid three-phase rectifier system employing boost topology,” in Proc. IEEE. PESC, 2005, pp. 487–493.
[67] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high power telecommunications rectifiers modules,” IEEE Trans. Ind. Electron., vol. 44, pp. 456–467, 1997.
[68] T. B. Soeiro and J. W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589–3601, 2013.
[69] A. Khaligh and M. D. Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, 2019.
[70] L. Wang, Z. Qin, T. Slangen, P. Bauer, and T. van Wijk, “Grid impact of electric vehicle fast charging stations: trends, standards, issues and mitigation measures—an overview,” IEEE Open J. Power Electron., vol. 2, pp. 56–74, 2021.
[71] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proc. IEEE, vol. 101, no. 11, pp. 2409–2427, 2013.
[72] J. C. Mukherjee and A. Gupta, “A review of charge scheduling of electric vehicles in smart grid,” IEEE Syst. J., vol. 9, no. 4, pp. 1541–1553, 2015.
[73] Y. C. Hsu, S. C. Kao, C. Y. Ho, P. H. Jhou, M. Z. Lu, and C. M. Liaw, “On an electric scooter with G2V/V2H/V2G and energy harvesting functions,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6910-6925, 2018.
[74] M. Kwon and S. Choi, “An electrolytic capacitorless bidirectional EV charger for V2G and V2H applications,” IEEE Trans. Power Electron., vol. 32, no. 9, pp. 6792-6799, 2016.
[75] H. N. de Melo, J. P. F. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A controllable bidirectional battery charger for electric vehicles with vehicle-to-grid capability,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 114-123, 2018.
[76] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A new single-phase PLL structure based on second order generalized integrator,” in Proc. IEEE PESC, 2006, pp. 1511–1516.
[77] P. Rodriguez, A. Luna, I. Candela, R. Teodorescu, and F. Blaabjerg, “Grid synchronization of power converters using multiple second order generalized integrators,” in Proc. IEEE IEAC, Orlando, FL, USA, 2008, pp. 755–760.
[78] M. Karimi-Ghartemani, S. A. Khajehoddin, P. K. Jain, A. Bakhshai, and M. Mojiri, “Addressing DC component in PLL and notch filter algorithms,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 78–86, 2012.
[79] S. K. Chung, “A phase tracking system for three phase utility interface inverters,” IEEE Trans. Power Electron., vol. 15, no. 3, pp. 431-438, 2000.
[80] S. Golestan, J. M. Guerrero, and J. C. Vasquez, “Three-phase PLLs: a review of recent advances,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1894–1907, 2017.
[81] P. Rodriguez, A. Luna, and I. Candela, “Multiresonant frequency-locked loop for grid synchronization of power converters under distorted grid conditions,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 127–138, 2011.
[82] D. Zammit, C. S. Staines, and M. Apap, “Comparison between PI and PR current controllers in grid connected PV inverters,” Int. J. Electr. Robot. Electron. Commun. Eng., vol. 8, pp. 221–226, 2014
[83] R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, “A new control structure for grid- connected LCL PV inverters with zero steady-state error and selective harmonic compensation,” in Proc. IEEE APEC, 2004, pp. 580-586.
[84] Sertac Bayhan, “a power flow control approach for grid-tied photovoltaic system with an integrated EV battery,” in Proc. IEEE CPE-PE, vol. 1, pp. 497-501, 2020.
[85] C. Schuss, B. Eichberger, and T. Rahkonen, “A monitoring system for the use of solar energy in electric and hybrid electric vehicles,” in Proc. IEEE IMTC, 2012, pp. 524–527.
[86] C. Schuss, T. Fabritius, B. Eichberger, and T. Rahkonen, “Impacts on the output power of photovoltaics on top of electric and hybrid electric vehicles,” IEEE Trans. Instrum. Meas., vol. 69, no. 5, pp. 2449-2458, 2020.
[87] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Average modeling and control design for VIENNA-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, 2009.
[88] C. Qiao and K. M. Smedley, “Three-phase unity-power-factor star-connected switch (VIENNA) rectifier with unified constant-frequency integration control,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 952–957, 2003.
[89] J. S. Lee and K. B. Lee, “Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4075-4084, 2016.
[90] J. Deng, S. Li, S. Hu, C. C. Mi, and R. Ma, “Design methodology of LLC resonant converters for electric vehicle battery chargers,” IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1581–1592, 2014.
[91] J. Jung, H. Kim, M. Ryu, and J. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, 2013.
[92] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. Lai, “Design of bidirectional DC-DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, 2015.
Half-bridge CLLC resonant converter
[93] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC-DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, 2017.
[94] S. Zou, J. Lu, A. Mallik, and A. Khaligh, “Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 998- 1005, 2018.
[95] C. Zhang, P. Li, Z. Kan, X. Chai, and X. Guo, “Integrated half-bridge CLLC bidirectional converter for energy storage systems,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3879–3889, 2018.
[96] “Digital signal controller TMS320F28335 data sheet,” Available: http://www.ti.com/lit/ds/ symlink/tms320f28335.pdf, 2016.
[97] H. C. Miao, “A varied voltage DC-link EV PMSM drive with bidirectional grid-connected capability,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2021.
[98] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 2nd ed. New York: Wiley-IEEE, 2002.
[99] “Comparative characteristics of batteries,” Available: https://leadcrystalbatteries.com/lead- crystal-battery-performance, 2019.
[100] “Super-capacitor BMOD0006 E160 B02 data sheet,” Available: https://www.maxwell.com/ images/documents/160VModule_DS_3000246_6.pdf, 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 升降壓轉換器介接蓄電池/超電容供電具聯網與能源收集功能之無位置感測電動車永磁同步馬達驅動系統
2. 具聯網及能源收集功能之蓄電池/超電容供電之電動車永磁同步馬達驅動系統
3. 應用相移隔離轉換器之具雙向聯網功能電動車馬達驅動系統
4. 具可變壓直流鏈及容錯能力之電動車永磁同步馬達驅動系統
5. 具無位置感測控制及車對電網/電網對車/車對車操作功能之電動車內置磁石永磁同步馬達驅動系統
6. 具雙向聯網功能之變壓直流鏈電動車永磁同步馬達驅動系統
7. 蓄電池供電開關式磁阻馬達驅動系統之開發
8. 具蓄電池/超電容混合式儲能與電網至車輛/車輛至電網功能之電動車輛切換式磁阻馬達驅動系統
9. 具電網至車輛與車輛至電網功能及交錯式界面轉換器之電動車內置磁石永磁同步馬達驅動系統
10. 具超電容電動車開關式磁阻馬達驅動系統之開發
11. 具車輛至電網及電網至車輛操作功能蓄電池/超電容供電之切換式磁阻馬達驅動系統
12. 具G2V/V2H/V2G及能源收集功能電動車無位置感測永磁同步馬達驅動系統之開發
13. 具電網至車輛/車輛至電網及插入式能源收集功能之蓄電池/超電容供電電動車開關式磁阻馬達驅動系統
14. 具雙向隔離聯網及能源收集功能之電動車永磁同步馬達驅動系統
15. 電動車同步磁阻馬達驅動系統之開發及其與電網/微電網之互聯操作
 
* *