帳號:guest(3.149.24.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉庭亦
作者(外文):Liu, Ting-I
論文名稱(中文):混合交直流微電網中具虛擬慣量垂降控制之雙向互連轉換器
論文名稱(外文):Virtual Inertia-Based Droop Control of Bidirectional Interlinking Converters in Hybrid AC/DC Microgrids
指導教授(中文):朱家齊
指導教授(外文):Chu, Chia-Chi
口試委員(中文):連國龍
廖益弘
陳宗柏
口試委員(外文):Lian, Kuo-Lung
Liao, Yi-Hung
Chen, Tsung-Po
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:109061504
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:54
中文關鍵詞:混合交流直流微電網雙向互連轉換器分散式發電系統下垂控制慣量模擬虛擬阻抗穩定度分析
外文關鍵詞:Distributed power generation systemHybrid AC / DC microgridsBidirectional interlinking converterDroop controlInertia EmulationVirtual impedanceStability analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:106
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文使用了雙向互連轉換器作為直流端與交流端功率傳輸的主要系統。與現有的純交流微電網不同,本文研究的範圍包含幾種不同的技術,並對其做一個技術的整合。在雙向互連轉換器啟用的狀況下,交流端的下垂控制和直流端的下垂控制使得功率在兩個系統間傳輸,並且透過雙向互連轉換器達到功率共享的效果。這個部分主要的挑戰在要管理兩種不同型態的功率,勢必需要依賴交流端、直流端以及雙向互連轉換器的互相配合。慣量模擬的技術也有在本研究中進行討論,分別應用在交流端、直流端以及雙向互連轉換器端,主要目的是改善在負載變動時電壓或頻率的偏差,使系統運作在穩定的狀態下。本研究也對穩定度做了分析,其中包含分析了不同參數對系統穩定度的影響,並從分析的結果選擇合適的參數。本文開發出合適的控制方案,並考慮了多種情境來控制整個系統。最後使用模擬軟體進行理論的驗證,並且再透過硬體的建置進行實驗,做進一步的驗證,以確保本研究使用的控制方法的可行性。
We will study operations and control of bidirectional interlinking converter (BIC)s in this paper. The BIC will be used as an energy buffer between DC and AC microgrids (MGs). When the BIC is enabled, the droop control at the DC side and that at the AC side will enable the power transfer between two sub-systems. Thus the proper power sharing can be achieved with the aid of the BIC. Since two different types of MGs are involved, cooperative control among AC MGs, DC MGs and BIC are considered. In addition to the droop control, the inertia emulation (IE) technology is also investigated in this study. The main purpose of IE is to improve the deviation of frequency or voltage when the system load changes. Thus, the entire power grid will be more stable. To ensure the stability of the closed-loop system, effects of various parameters of the system is investigated. To validate the effectiveness of the proposed BIC control scheme, both simulation studies and hardware experiments are performed. Both results can demonstrate that the proposed BIC control can achieve these desired control objectives.
Abstract ...........................................................I
摘要 ...............................................................II
致謝 ..............................................................III
Contents ..........................................................IV
List of Figures ...................................................VI
List of Tables ..................................................VIII
Nomenclature ......................................................IX
1 Introduction .....................................................1
1.1 Motivation .....................................................1
1.2 Literature Survey ..............................................2
1.3 Contribution ...................................................4
2 Hybrid AC/DC Microgrids ..........................................6
2.1 AC Side ........................................................6
2.1.1 Voltage Control ..............................................7
2.1.2 Power Control ................................................8
2.1.3 Current Control ..............................................8
2.1.4 Droop Control ................................................9
2.2 DC Side .......................................................11
2.2.1 I-V Droop ...................................................12
2.2.2 V-I Droop ...................................................13
2.3 BIC ...........................................................14
2.3.1 Grid-Supporting .............................................14
2.3.2 Dual Droop ..................................................15
2.4 E-Droop .......................................................16
2.4.1 PI Droop ....................................................17
2.4.2 Grid-Forming ................................................18
2.4.3 Mixed droop .................................................18
2.5 Summary .......................................................19
3 Control of BICs .................................................20
3.1 Droop Control .................................................20
3.2 Inertia Emulation .............................................22
3.2.1 Inertia Emulation of BIC ....................................23
3.2.2 Inertia Emulation of AC Side ................................25
3.3 Summary .......................................................27
4 Simulation Studies and Hardware Experiments .....................28
4.1 Simulation Platform ...........................................28
4.2 Hardware Platform .............................................30
4.3 Experiment Procedure ..........................................31
4.4 Simulation Results ............................................32
4.4.1 I-V Droop V-I Droop control methods comparison ..............32
4.4.2 Comparison of inertia emulation control methods .............35
4.5 Case 1 ........................................................36
4.5.1 Matlab simulation results of Case 1 .........................36
4.5.2 PLECS simulation results of Case 1 ..........................39
4.5.3 Hardware Experiments ........................................42
4.6 Case 2 ........................................................46
4.7 Summary .......................................................47
5 Conclusion and Future Work ......................................48
5.1 Conclusion ....................................................48
5.2 Future Work ...................................................49
5.2.1 Secondary control technology ................................49
5.2.2 Reactive power sharing technology ...........................49
Reference .........................................................50
[1] Mukul C. Chandorkar, Deepakraj M. Divan, and Rambabu Adapa, “Control of parallel connected inverters in standalone AC supply systems,” IEEE Transactions on Industry Applications, vol. 29, no. 1, pp.136-143, Jan/Feb. 1993
[2] E. Espina, R. C´ardenas-Dobson, M. Espinoza-B, C. Burgos-Mellado, and D. S´aez, ”Cooperative regulation of imbalances in three-phase four-wire microgrids using single-phase droop control and secondary control algorithms,” IEEE Transactions on Power Electronics, vol. 35, no. 2, pp.1978-1992, Feb. 2020
[3] P. Rodr´ıguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu and F. Blaabjerg, ”New perspectives on droop control in AC microgrid,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp.5741-5745, Jul. 2017
[4] W. Yuan, Y. Wang, and Z. Chen, ”New perspectives on power control of AC microgrid considering operation cost and efficiency,” IEEE Transactions on Power System, vol. 36, no. 5, pp.4844-4847, Sep. 2021
[5] Q.-C. Zhong, W.-L Ming, and Y. Zeng, ”Self-synchronized universal droop controller,” IEEE Access, vol. 4, pp. 7145-7153, 2016
[6] Q.-C. Zhong, W.-L Ming, and Y. Zeng, ”Universal droop control of inverters with different types of output impedance,” IEEE Access, vol. 4, pp. 702-712, 2016
[7] K.-W Lao, W. Deng, J. Sheng, and N. Dai, ”PQ-coupling strategy for droop control in grid-connected capacitive-coupled inverterr,” IEEE Access, vol. 7, pp.31663-31671, 2019
[8] D. Pattabiraman, R. H. Lasseter and T. M. Jahns, ”Comparison of grid following and grid forming control for a high inverter penetration power system,” 2018 IEEE Power & Energy Society General Meeting (PESGM), Aug. 2018
[9] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, ”Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2214-2223, May 2013
[10] S. Peyghami, H. Mokhtari, and F. Blaabjerg, ”Autonomous operation of a hybrid AC/DC microgrid with multiple interlinking converters,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6480-6488, Nov. 2018
[11] P. Lin, P. Wang, C. Jin, and J. Xiao, ”A distributed power management strategy for multi-paralleled bidirectional interlinking converters in hybrid AC/DC microgrids,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5696-5711, Sep. 2019
[12] F. Gao, S. Bozhko, A. Costabeber, C. Patel, P. Wheeler, C.I. Hill, and G. Asher, ”Comparative stability analysis of droop control approaches in voltage-sourceconverter-based DC microgrids, ”IEEE Transactions on Smart Grid, vol. 32, no.3, pp. 2395-2415, Mar. 2017
[13] A. Ordono, E. Unamuno, J. A. Barrena, and J. Paniagua, “Interlinking converters and their contribution to primary regulation: A review,”Int. J. Electr. Power Energy Syst., vol. 111, pp. 44–57, Oct. 2019
[14] E. Unamuno, J. Paniagua, and J. A. Barrena, “Unified virtual inertia for AC and DC microgrids: And the role of interlinking converters,”emphIEEE Electrific. Mag., vol. 7, no. 4, pp. 56–68, Dec. 2019
[15] J. Paniagua, E. Unamuno, and J. A. Barrena, “Dual inertia-emulation control for interlinking converters in grid-tying applications,”IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 3868-3876, Sep. 2021
[16] L. Guo, S. Zhang, X. Li, Y. W. Li, C. Wang, and Y. Feng, “Stability analysis and damping enhancement based on frequency-dependent virtual impedance for DC microgrids,”IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 1, pp. 338-350, Mar. 2017
[17] Q. Liu, T. Caldognetto and S. Buso, ”Stability analysis and auto-tuning of interlinking converters connected to weak grids,” IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9435-9446, Oct. 2019
[18] Z. Shuai, Y. Peng, J. M. Guerrero, Y. Li, and Z. John Shen, ”Transient response analysis of inverter-based microgrids under unbalanced conditions using a dynamic phasor model,” IEEE Transactions on Industrial Electronics, vol. 66, no.4, pp. 2868-2879, Apr. 2019
[19] H. Tian, Y.W. Li, and P.Wang, ”Hybrid AC/DC system harmonics control through grid interfacing converters with low switching frequency,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2256-2267, Mar. 2004
[20] H. Zhang, J. Zhou, Q. Sun, J. M. Guerrero, and D. Ma, ”Data-driven control for interlinked AC/DC microgrids via model-free adaptive control and dual-droop control,” IEEE Transactions on Smart Grid, vol.8, no. 2, pp. 557-571, Mar 2017.
[21] T. -P. Chen, ”Zero-sequence circulating current reduction method for parallel HEPWM inverters between AC bus and DC bus,” IEEE Transactions on Industrial Electronics, vol.59, no. 1, pp. 290-300, Jan 2012.
[22] Y. Xia, Y. Peng, P. Yang, M. Yu, and W. Wei, ”Distributed coordination control for multiple bidirectional power converters in a hybrid AC/DC microgrid,” IEEE Transactions on Power Electronics, vol.32, no. 6, pp. 4949-4959, Jun 2017.
[23] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, ”Autonomous control of interlinking converter with energy storage in hybrid AC–DC microgrid,” IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1374-1382, May/Jun. 2013.
[24] M. Naderi, Y. Khayat, Q. Shafiee, T. Dragicevic, H. Bevrani, and F. Blaabjerg, ”Interconnected autonomous AC microgrids via back-to-back converters—part I: Small-signal modeling,” IEEE Transactions on Power Electronics, vol. 35, no. 5, pp. 4728-4740, May. 2020.
[25] M. Naderi, Y. Khayat, Q. Shafiee, T. Dragicevic, H. Bevrani, and F. Blaabjerg, ”Interconnected autonomous AC microgrids via back-to-back converters—part II: Stability analysis,” IEEE Transactions on Power Electronics, vol. 35, no. 5, May. 2020.
[26] M. S. Rahman, M. J. Hossain, J. Lu, and H. R. Pota, ”A need-based distributed coordination strategy for EV storages in a commercial hybrid AC/DC microgrid with an improved interlinking converter control topology,” IEEE Transactions on Energy Conversion, vol. 33, no. 3, pp. 1372-1383, Sep. 2018.
[27] J. Wang, C. Jin and P. Wang, ”A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids,” IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6188-6197, Aug. 2018.
[28] I. U. Nutkani, P. C. Loh, and F. Blaabjerg, ”Distributed operation of interlinked AC microgrids with dynamic active and reactive power tuning,” IEEE Transactions on Industry Applications, vol. 49, no. 5, pp. 2188-2196, Sep/Oct. 2013.
[29] A. Gupta, S. Doolla, and K. Chatterjee, ”Hybrid AC–DC microgrid: systematic evaluation of control strategies,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3830-3843, Jul. 2018.
[30] N. Eghtedarpour, and E. Farjah, ”Power control and management in a hybrid AC/DC microgrid,” IEEE Transactions on Smart Grid, vol. 5, no. 3, pp. 1494-1505, May. 2014.
[31] H. Wenyan, C. Hongkun, Y. Xiaonan, and H. Pan, ”Control strategy of the bidirectional converter for hybrid AC/DC microgrid,” IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1-5, Nov. 2015.
[32] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, ”Hybrid AC-DC microgrids with energy storages and progressive energy flow tuning,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1533-1543, Apr. 2013.
[33] L. Che, M. Shahidehpour, A. Alabdulwahab, and Y. Al-Turki, ”Hierarchical coordination of a community microgrid with AC and DC microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 3042-3051, Nov. 2015.
[34] X. Li, L. Guo, Y. Li, C. Hong, Y. Zhang, Z. Guo, D. Huang, and C. Wang, ”Flexible interlinking and coordinated power control of multiple DC microgrids clusters,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 904-915, Apr. 2018.
[35] Y. Xia, Y. Peng, P. Yang, M. Yu, and W. Wei, ”Autonomous operation of hybrid AC-DC microgrids,” IEEE International Conference on Sustainable Energy Technologies (ICSET), pp. 1-7, Dec. 2010.
[36] P. Yang, Y. Xia, M. Yu, W. Wei, and Y. Peng, ”A decentralized coordination control method for parallel bidirectional power converters in a hybrid AC/DC microgrid,” IEEE Transactions on Industrial Electronics, vol. 65, no. 8, pp. 6217-6228, Aug. 2018.
[37] Y. Xia, Y. Peng, P. Yang, M. Yu, and W. Wei, ”Distributed coordination control for multiple bidirectional power converters in a hybrid AC/DC microgrid,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4949-4959, Jun. 2017.
[38] D. Chen, Y. Xu, and A. Q. Huang, ”Integration of DC microgrids as virtual synchronous machines into the AC grid,” IEEE Transactions on Industrial Electronics, vol. 64, no. 9, pp. 7455-7466, Sep. 2017.
[39] E. A. A. Coelho, D. Wu, J. M. Guerrero, J. C. Vasquez, T. Dragicevi´c, C. Stefanovi´c and P. Popovski, ”Small-signal analysis of the microgrid secondary control considering a communication time delay”, IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6257-6269, Oct. 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *