|
(1) Rossolini, G. M.; Arena, F.; Pecile, P.; Pollini, S. Update on the antibiotic resistance crisis. Current opinion in pharmacology 2014, 18, 56-60. (2) Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K.; Wertheim, H. F.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H. Antibiotic resistance—the need for global solutions. The Lancet infectious diseases 2013, 13 (12), 1057-1098. Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O. The global threat of antimicrobial resistance: science for intervention. New microbes and new infections 2015, 6, 22-29. (3) Gaurav, A.; Kothari, A.; Omar, B. J.; Pathania, R. Assessment of polymyxin B–doxycycline in combination against Pseudomonas aeruginosa in vitro and in a mouse model of acute pneumonia. Int. J. Antimicrob. Agents 2020, 56 (1), 106022. (4) Wenzler, E.; Fraidenburg, D. R.; Scardina, T.; Danziger, L. H. Inhaled antibiotics for Gram-negative respiratory infections. Clin. Microbiol. Rev. 2016, 29 (3), 581-632. (5) Ho, D.-K.; Nichols, B. L.; Edgar, K. J.; Murgia, X.; Loretz, B.; Lehr, C.-M. Challenges and strategies in drug delivery systems for treatment of pulmonary infections. Eur. J. Pharm. Biopharm. 2019, 144, 110-124. (6) Rabea, E. I.; Badawy, M. E.-T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 2003, 4 (6), 1457-1465. Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27 (1), 76-83. Jennings, M. C.; Minbiole, K. P.; Wuest, W. M. Quaternary ammonium compounds: an antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS infectious diseases 2015, 1 (7), 288-303. Vincent, M.; Duval, R. E.; Hartemann, P.; Engels‐Deutsch, M. Contact killing and antimicrobial properties of copper. J. Appl. Microbiol. 2018, 124 (5), 1032-1046. Cheng, D.; He, M.; Li, W.; Wu, J.; Ran, J.; Cai, G.; Wang, X. Hydrothermal growing of cluster-like ZnO nanoparticles without crystal seeding on PET films via dopamine anchor. Appl. Surf. Sci. 2019, 467, 534-542. (7) Furchgott, R. F.; Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288 (5789), 373-376. Rapoport, R. M.; Draznin, M. B.; Murad, F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 1983, 306 (5939), 174-176. Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences 1987, 84 (24), 9265-9269. (8) Bolaños, J. P.; Almeida, A.; Stewart, V.; Peuchen, S.; Land, J. M.; Clark, J. B.; Heales, S. J. Nitric oxide‐mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J. Neurochem. 1997, 68 (6), 2227-2240. (9) Carpenter, A. W.; Schoenfisch, M. H. Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev. 2012, 41 (10), 3742-3752. (10) Seabra, A. B.; Justo, G. Z.; Haddad, P. S. State of the art, challenges and perspectives in the design of nitric oxide-releasing polymeric nanomaterials for biomedical applications. Biotechnol. Adv. 2015, 33 (6), 1370-1379. (11) Hill, B. G.; Dranka, B. P.; Bailey, S. M.; Lancaster, J. R.; Darley-Usmar, V. M. What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology. J. Biol. Chem. 2010, 285 (26), 19699-19704. (12) Förstermann, U.; Sessa, W. C. Nitric oxide synthases: regulation and function. Eur. Heart J. 2012, 33 (7), 829-837. (13) Friedman, A.; Blecher, K.; Sanchez, D.; Tuckman-Vernon, C.; Gialanella, P.; Friedman, J. M.; Martinez, L. R.; Nosanchuk, J. D. Susceptibility of Gram-positive and-negative bacteria to novel nitric oxide-releasing nanoparticle technology. Virulence 2011, 2 (3), 217-221. (14) Efron, D. T.; Most, D.; Barbul, A. Role of nitric oxide in wound healing. Curr. Opin. Clin. Nutr. Metab. Care 2000, 3 (3), 197-204. Ramadass, S. K.; Nazir, L. S.; Thangam, R.; Perumal, R. K.; Manjubala, I.; Madhan, B.; Seetharaman, S. Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf. B. Biointerfaces 2019, 175, 636-643. Zhang, Y.; Tang, K.; Chen, B.; Zhou, S.; Li, N.; Liu, C.; Yang, J.; Lin, R.; Zhang, T.; He, W. A polyethylenimine-based diazeniumdiolate nitric oxide donor accelerates wound healing. Biomaterials science 2019, 7 (4), 1607-1616. (15) Reynolds, M. M.; Witzeling, S. D.; Damodaran, V. B.; Medeiros, T. N.; Knodle, R. D.; Edwards, M. A.; Lookian, P. P.; Brown, M. A. Applications for nitric oxide in halting proliferation of tumor cells. Biochemical and biophysical research communications 2013, 431 (4), 647-651. Alimoradi, H.; Greish, K.; Barzegar-Fallah, A.; Alshaibani, L.; Pittalà, V. Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity. International journal of nanomedicine 2018, 13, 7771. (16) Barraud, N.; J Kelso, M.; A Rice, S.; Kjelleberg, S. Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr. Pharm. Des. 2015, 21 (1), 31-42. Quinn, J. F.; Whittaker, M. R.; Davis, T. P. Delivering nitric oxide with nanoparticles. Journal of Controlled Release 2015, 205, 190-205. Wo, Y.; Brisbois, E. J.; Bartlett, R. H.; Meyerhoff, M. E. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomaterials science 2016, 4 (8), 1161-1183. (17) De Groote, M. A.; Fang, F. C. NO inhibitions: antimicrobial properties of nitric oxide. Clin. Infect. Dis. 1995, 21 (Supplement_2), S162-S165. (18) Hetrick, E. M.; Shin, J. H.; Stasko, N. A.; Johnson, C. B.; Wespe, D. A.; Holmuhamedov, E.; Schoenfisch, M. H. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS nano 2008, 2 (2), 235-246. (19) Wink, D. A.; Kasprzak, K. S.; Maragos, C. M.; Elespuru, R. K.; Misra, M.; Dunams, T. M.; Cebula, T. A.; Koch, W. H.; Andrews, A.; Allen, J. S. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 1991, 254 (5034), 1001-1003. (20) Fang, F. C. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. The Journal of clinical investigation 1997, 99 (12), 2818-2825. Ghaffari, A.; Miller, C.; McMullin, B.; Ghahary, A. Potential application of gaseous nitric oxide as a topical antimicrobial agent. Nitric Oxide 2006, 14 (1), 21-29. Schairer, D. O.; Chouake, J. S.; Nosanchuk, J. D.; Friedman, A. J. The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence 2012, 3 (3), 271-279. (21) Kiaee, G.; Mostafalu, P.; Samandari, M.; Sonkusale, S. A pH‐Mediated Electronic Wound Dressing for Controlled Drug Delivery. Advanced healthcare materials 2018, 7 (18), 1800396. (22) Privett, B. J.; Broadnax, A. D.; Bauman, S. J.; Riccio, D. A.; Schoenfisch, M. H. Examination of bacterial resistance to exogenous nitric oxide. Nitric Oxide 2012, 26 (3), 169-173. (23) Lee, J.; Kwak, D.; Kim, H.; Kim, J.; Hlaing, S. P.; Hasan, N.; Cao, J.; Yoo, J.-W. Nitric oxide-releasing s-nitrosoglutathione-conjugated poly (Lactic-Co-Glycolic Acid) nanoparticles for the treatment of MRSA-infected cutaneous wounds. Pharmaceutics 2020, 12 (7), 618. (24) Miller, C.; McMullin, B.; Ghaffari, A.; Stenzler, A.; Pick, N.; Roscoe, D.; Ghahary, A.; Road, J.; Av-Gay, Y. Gaseous nitric oxide bactericidal activity retained during intermittent high-dose short duration exposure. Nitric Oxide 2009, 20 (1), 16-23. (25) Miller, C. C.; Hergott, C. A.; Rohan, M.; Arsenault-Mehta, K.; Döring, G.; Mehta, S. Inhaled nitric oxide decreases the bacterial load in a rat model of Pseudomonas aeruginosa pneumonia. Journal of Cystic Fibrosis 2013, 12 (6), 817-820. (26) Deppisch, C.; Herrmann, G.; Graepler-Mainka, U.; Wirtz, H.; Heyder, S.; Engel, C.; Marschal, M.; Miller, C. C.; Riethmüller, J. Gaseous nitric oxide to treat antibiotic resistant bacterial and fungal lung infections in patients with cystic fibrosis: a phase I clinical study. Infection 2016, 44 (4), 513-520. (27) Chiarelli, L. R.; Degiacomi, G.; Egorova, A.; Makarov, V.; Pasca, M. R. Nitric oxide-releasing compounds for the treatment of lung infections. Drug Discovery Today 2021, 26 (2), 542-550. (28) Howlin, R. P.; Cathie, K.; Hall-Stoodley, L.; Cornelius, V.; Duignan, C.; Allan, R. N.; Fernandez, B. O.; Barraud, N.; Bruce, K. D.; Jefferies, J. Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Mol. Ther. 2017, 25 (9), 2104-2116. (29) Gore, A.; Gauthier, A. G.; Lin, M.; Patel, V.; Thomas, D. D.; Ashby Jr, C. R.; Mantell, L. L. The nitric oxide donor,(Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate/D-NO), increases survival by attenuating hyperoxia-compromised innate immunity in bacterial clearance in a mouse model of ventilator-associated pneumonia. Biochem. Pharmacol. 2020, 176, 113817. (30) Rong, F.; Tang, Y.; Wang, T.; Feng, T.; Song, J.; Li, P.; Huang, W. Nitric oxide-releasing polymeric materials for antimicrobial applications: a review. Antioxidants 2019, 8 (11), 556. (31) Rodeberg, D. A.; Chaet, M. S.; Bass, R. C.; Arkovitz, M. S.; Garcia, V. F. Nitric oxide: an overview. The American journal of surgery 1995, 170 (3), 292-303. Thomas, D. D. Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox biology 2015, 5, 225-233. (32) Huang, Z.; Fu, J.; Zhang, Y. Nitric oxide donor-based cancer therapy: advances and prospects. J. Med. Chem. 2017, 60 (18), 7617-7635. Yang, L.; Feura, E. S.; Ahonen, M. J. R.; Schoenfisch, M. H. Nitric oxide–releasing macromolecular scaffolds for antibacterial applications. Advanced healthcare materials 2018, 7 (13), 1800155. (33) Stasko, N. A.; Schoenfisch, M. H. Dendrimers as a scaffold for nitric oxide release. Journal of the American Chemical Society 2006, 128 (25), 8265-8271. Grommersch, B. M.; Pant, J.; Hopkins, S. P.; Goudie, M. J.; Handa, H. Biotemplated synthesis and characterization of mesoporous nitric oxide-releasing diatomaceous earth silica particles. ACS applied materials & interfaces 2018, 10 (3), 2291-2301. (34) Riccio, D. A.; Dobmeier, K. P.; Hetrick, E. M.; Privett, B. J.; Paul, H. S.; Schoenfisch, M. H. Nitric oxide-releasing S-nitrosothiol-modified xerogels. Biomaterials 2009, 30 (27), 4494-4502. (35) Drago, R. S.; Paulik, F. The reaction of nitrogen (II) oxide with diethylamine. Journal of the American Chemical society 1960, 82 (1), 96-98. Drago, R. S.; Karstetter, B. R. The reaction of nitrogen (II) oxide with various primary and secondary amines. Journal of the American Chemical Society 1961, 83 (8), 1819-1822. (36) Park, J.; Kim, J.; Singha, K.; Han, D.-K.; Park, H.; Kim, W. J. Nitric oxide integrated polyethylenimine-based tri-block copolymer for efficient antibacterial activity. Biomaterials 2013, 34 (34), 8766-8775. (37) Ragsdale, R. O.; Karstetter, B. R.; Drago, R. S. Decomposition of the adducts of diethylamine and isopropylamine with nitrogen (II) oxide. Inorg. Chem. 1965, 4 (3), 420-422. Lowe, A.; Deng, W.; Smith Jr, D. W.; Balkus Jr, K. J. Acrylonitrile-based nitric oxide releasing melt-spun fibers for enhanced wound healing. Macromolecules 2012, 45 (15), 5894-5900. (38) Liu, S.; Cai, X.; Xue, W.; Ma, D.; Zhang, W. Chitosan derivatives co-delivering nitric oxide and methicillin for the effective therapy to the methicillin-resistant S. aureus infection. Carbohydr. Polym. 2020, 234, 115928. DOI: https://doi.org/10.1016/j.carbpol.2020.115928. (39) Jones, H. O.; Tasker, H. S. CCXI.—The action of mercaptans on acid chlorides. Part I. Oxalyl chloride; the mono-and dithio-oxalates. Journal of the Chemical Society, Transactions 1909, 95, 1904-1909. (40) Swift, H. Decomposition of S-nitrosothiols by mercury (II) and silver salts. Journal of the Chemical Society, Perkin Transactions 2 1997, (10), 1933-1935. Stotz, W.; Brown, L. A. S.; Jain, L. Elevated Temperature Enhances Release of Nitric Oxide from S-Nitroso-glutathione (GSNO) 351. Pediatr. Res. 1998, 43 (4), 62-62. Williams, D. L. H. The Chemistry of S-Nitrosothiols. Acc. Chem. Res. 1999, 32 (10), 869-876. DOI: 10.1021/ar9800439. Veleeparampil, M. M.; Aravind, U. K.; Aravindakumar, C. Decomposition of S-nitrosothiols induced by UV and sunlight. Advances in Physical Chemistry 2009, 2009. Moran, E. E.; Timerghazin, Q. K.; Kwong, E.; English, A. M. Kinetics and mechanism of S-nitrosothiol acid-catalyzed hydrolysis: sulfur activation promotes facile NO+ release. The Journal of Physical Chemistry B 2011, 115 (12), 3112-3126. Smith, B. C.; Marletta, M. A. Mechanisms of S-nitrosothiol formation and selectivity in nitric oxide signaling. Curr. Opin. Chem. Biol. 2012, 16 (5-6), 498-506. (41) Konorev, E. A.; Tarpey, M. M.; Joseph, J.; Baker, J. E.; Kalyanaraman, B. S-nitrosoglutathione improves functional recovery in the isolated rat heart after cardioplegic ischemic arrest-evidence for a cardioprotective effect of nitric oxide. Journal of Pharmacology and Experimental Therapeutics 1995, 274 (1), 200-206. (42) Ignarro, L. J.; Lippton, H.; Edwards, J. C.; Baricos, W. H.; Hyman, A. L.; Kadowitz, P. J.; Gruetter, C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. Journal of Pharmacology and Experimental Therapeutics 1981, 218 (3), 739-749. (43) Pant, J.; Gao, J.; Goudie, M. J.; Hopkins, S. P.; Locklin, J.; Handa, H. A multi-defense strategy: Enhancing bactericidal activity of a medical grade polymer with a nitric oxide donor and surface-immobilized quaternary ammonium compound. Acta Biomater. 2017, 58, 421-431. (44) Lewandowska, H.; Męczyńska, S.; Sochanowicz, B.; Sadło, J.; Kruszewski, M. Crucial role of lysosomal iron in the formation of dinitrosyl iron complexes in vivo. JBIC Journal of Biological Inorganic Chemistry 2007, 12 (3), 345-352. (45) Kleschyov, A. L.; Hubert, G.; Munzel, T.; Stoclet, J.-C.; Bucher, B. Low molecular mass dinitrosyl nonheme-iron complexes up-regulate noradrenaline release in the rat tail artery. BMC Pharmacol. 2002, 2 (1), 1-5. (46) Cha, W.; Meyerhoff, M. E. Catalytic generation of nitric oxide from S-nitrosothiols using immobilized organoselenium species. Biomaterials 2007, 28 (1), 19-27. Molina, M. M.; Seabra, A. B.; de Oliveira, M. G.; Itri, R.; Haddad, P. S. Nitric oxide donor superparamagnetic iron oxide nanoparticles. Materials Science and Engineering: C 2013, 33 (2), 746-751. (47) Tai, L.-A.; Wang, Y.-C.; Yang, C.-S. Heat-activated sustaining nitric oxide release from zwitterionic diazeniumdiolate loaded in thermo-sensitive liposomes. Nitric Oxide 2010, 23 (1), 60-64. Zhang, K.; Xu, H.; Jia, X.; Chen, Y.; Ma, M.; Sun, L.; Chen, H. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS nano 2016, 10 (12), 10816-10828. Wang, Y.; Huang, X.; Tang, Y.; Zou, J.; Wang, P.; Zhang, Y.; Si, W.; Huang, W.; Dong, X. A light-induced nitric oxide controllable release nano-platform based on diketopyrrolopyrrole derivatives for pH-responsive photodynamic/photothermal synergistic cancer therapy. Chemical science 2018, 9 (42), 8103-8109. (48) Yang, F.; Li, M.; Liu, Y.; Wang, T.; Feng, Z.; Cui, H.; Gu, N. Glucose and magnetic-responsive approach toward in situ nitric oxide bubbles controlled generation for hyperglycemia theranostics. Journal of Controlled Release 2016, 228, 87-95. (49) Ghalei, S.; Hopkins, S.; Douglass, M.; Garren, M.; Mondal, A.; Handa, H. Nitric oxide releasing halloysite nanotubes for biomedical applications. Journal of Colloid and Interface Science 2021, 590, 277-289. (50) Singh, N.; Patel, K.; Sahoo, S. K.; Kumar, R. Human nitric oxide biomarker as potential NO donor in conjunction with superparamagnetic iron oxide@ gold core shell nanoparticles for cancer therapeutics. Colloids Surf. B. Biointerfaces 2018, 163, 246-256. (51) Gao, Q.; Zhang, X.; Yin, W.; Ma, D.; Xie, C.; Zheng, L.; Dong, X.; Mei, L.; Yu, J.; Wang, C. Functionalized MoS2 nanovehicle with near‐infrared laser‐mediated nitric oxide release and photothermal activities for advanced bacteria‐infected wound therapy. Small 2018, 14 (45), 1802290. (52) Feng, T.; Wan, J.; Li, P.; Ran, H.; Chen, H.; Wang, Z.; Zhang, L. A novel NIR-controlled NO release of sodium nitroprusside-doped Prussian blue nanoparticle for synergistic tumor treatment. Biomaterials 2019, 214, 119213. (53) Liu, T.; Zhang, P.; Huang, X.; Chi, X.; Li, Z.; Zhang, Z.; Guo, D.-S.; Yang, X. Magnetic core-shell S-nitrosothiols nanoparticles as tumor dual-targeting theranostic platform. Colloids Surf. B. Biointerfaces 2019, 181, 400-407. (54) Zhang, C.; Li, Q.; Zhao, Y.; Liu, H.; Song, S.; Zhao, Y.; Lin, Q.; Chang, Y. Near-infrared light-mediated and nitric oxide-supplied nanospheres for enhanced synergistic thermo-chemotherapy. Journal of Materials Chemistry B 2019, 7 (4), 548-555. (55) Yu, Y.-T.; Shi, S.-W.; Wang, Y.; Zhang, Q.-L.; Gao, S.-H.; Yang, S.-P.; Liu, J.-G. A ruthenium nitrosyl-functionalized magnetic nanoplatform with near-infrared light-controlled nitric oxide delivery and photothermal effect for enhanced antitumor and antibacterial therapy. ACS applied materials & interfaces 2019, 12 (1), 312-321. (56) Yin, H.; Guan, X.; Lin, H.; Pu, Y.; Fang, Y.; Yue, W.; Zhou, B.; Wang, Q.; Chen, Y.; Xu, H. Nanomedicine‐enabled photonic thermogaseous cancer therapy. Advanced Science 2020, 7 (2), 1901954. (57) Lu, B.; Hu, E.; Xie, R.; Yu, K.; Lu, F.; Bao, R.; Wang, C.; Lan, G.; Dai, F. Magnetically Guided Nanoworms for Precise Delivery to Enhance In Situ Production of Nitric Oxide to Combat Focal Bacterial Infection In Vivo. ACS Applied Materials & Interfaces 2021. (58) Jin, Z.; Wen, Y.; Hu, Y.; Chen, W.; Zheng, X.; Guo, W.; Wang, T.; Qian, Z.; Su, B.-L.; He, Q. MRI-guided and ultrasound-triggered release of NO by advanced nanomedicine. Nanoscale 2017, 9 (10), 3637-3645. (59) Kang, Y.; Kim, J.; Park, J.; Lee, Y. M.; Saravanakumar, G.; Park, K. M.; Choi, W.; Kim, K.; Lee, E.; Kim, C. Tumor vasodilation by N-Heterocyclic carbene-based nitric oxide delivery triggered by high-intensity focused ultrasound and enhanced drug homing to tumor sites for anti-cancer therapy. Biomaterials 2019, 217, 119297. (60) An, J.; Hu, Y.-G.; Li, C.; Hou, X.-L.; Cheng, K.; Zhang, B.; Zhang, R.-Y.; Li, D.-Y.; Liu, S.-J.; Liu, B. A pH/ultrasound dual-response biomimetic nanoplatform for nitric oxide gas-sonodynamic combined therapy and repeated ultrasound for relieving hypoxia. Biomaterials 2020, 230, 119636. (61) Zheng, Y.; Liu, Y.; Wei, F.; Xiao, H.; Mou, J.; Wu, H.; Yang, S. Functionalized g-C3N4 nanosheets for potential use in magnetic resonance imaging-guided sonodynamic and nitric oxide combination therapy. Acta Biomater. 2021, 121, 592-604. (62) Xu, Y.; Liu, J.; Liu, Z.; Chen, G.; Li, X.; Ren, H. Damaging Tumor Vessels with an Ultrasound-Triggered NO Release Nanosystem to Enhance Drug Accumulation and T Cells Infiltration. International Journal of Nanomedicine 2021, 16, 2597. (63) Wang, J.; Wang, L.; Pan, J.; Zhao, J.; Tang, J.; Jiang, D.; Hu, P.; Jia, W.; Shi, J. Magneto‐Based Synergetic Therapy for Implant‐Associated Infections via Biofilm Disruption and Innate Immunity Regulation. Advanced Science 2021, 8 (6), 2004010. (64) Zhao, J.; Hu, Y.; wei Lin, S.; Resch-Genger, U.; Zhang, R.; Wen, J.; Kong, X.; Qin, A.; Ou, J. Enhanced luminescence intensity of near-infrared-sensitized upconversion nanoparticles via Ca 2+ doping for a nitric oxide release platform. Journal of Materials Chemistry B 2020, 8 (30), 6481-6489. (65) Kao, P.-T.; Lee, I.-J.; Liau, I.; Yeh, C.-S. Controllable NO release from Cu 1.6 S nanoparticle decomposition of S-nitrosoglutathiones following photothermal disintegration of polymersomes to elicit cerebral vasodilatory activity. Chemical science 2017, 8 (1), 291-297. (66) Yu, S.; Li, G.; Liu, R.; Ma, D.; Xue, W. Dendritic Fe3O4@ poly (dopamine)@ PAMAM nanocomposite as controllable NO‐releasing material: a synergistic photothermal and NO antibacterial study. Adv. Funct. Mater. 2018, 28 (20), 1707440. (67) Su, C.-H.; Li, W.-P.; Tsao, L.-C.; Wang, L.-C.; Hsu, Y.-P.; Wang, W.-J.; Liao, M.-C.; Lee, C.-L.; Yeh, C.-S. Enhancing microcirculation on multitriggering manner facilitates angiogenesis and collagen deposition on wound healing by photoreleased NO from hemin-derivatized colloids. ACS nano 2019, 13 (4), 4290-4301. (68) Li, J.; Jiang, R.; Wang, Q.; Li, X.; Hu, X.; Yuan, Y.; Lu, X.; Wang, W.; Huang, W.; Fan, Q. Semiconducting polymer nanotheranostics for NIR-II/Photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy. Biomaterials 2019, 217, 119304. (69) Ding, Y.; Du, C.; Qian, J.; Dong, C.-M. NIR-responsive polypeptide nanocomposite generates NO gas, mild photothermia, and chemotherapy to reverse multidrug-resistant cancer. Nano Lett. 2019, 19 (7), 4362-4370. (70) Jin, R.; Xie, J.; Yang, X.; Tian, Y.; Yuan, P.; Bai, Y.; Liu, S.; Cai, B.; Chen, X. A tumor-targeted nanoplatform with stimuli-responsive cascaded activities for multiple model tumor therapy. Biomaterials science 2020, 8 (7), 1865-1874. (71) Lee, I.-J.; Kao, P.-T.; Hung, S.-A.; Wang, Z.-W.; Lin, H.-J.; Chang, W.-T.; Yeh, C.-S.; Liau, I. Light triggering goldsomes enable local NO-generation and alleviate pathological vasoconstriction. Nanomed. Nanotechnol. Biol. Med. 2020, 30, 102282. (72) Yang, Q.; Yin, H.; Xu, T.; Zhu, D.; Yin, J.; Chen, Y.; Yu, X.; Gao, J.; Zhang, C.; Chen, Y. Engineering 2D Mesoporous Silica@ MXene‐Integrated 3D‐Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO‐Augmented Bone Regeneration. Small 2020, 16 (14), 1906814. (73) Fan, W.; Bu, W.; Zhang, Z.; Shen, B.; Zhang, H.; He, Q.; Ni, D.; Cui, Z.; Zhao, K.; Bu, J. X‐ray radiation‐controlled NO‐release for on‐demand depth‐independent hypoxic radiosensitization. Angew. Chem. Int. Ed. 2015, 54 (47), 14026-14030. (74) Dou, Y.; Liu, Y.; Zhao, F.; Guo, Y.; Li, X.; Wu, M.; Chang, J.; Yu, C. Radiation-responsive scintillating nanotheranostics for reduced hypoxic radioresistance under ROS/NO-mediated tumor microenvironment regulation. Theranostics 2018, 8 (21), 5870. (75) Gao, S.; Zhang, W.; Wang, R.; Hopkins, S. P.; Spagnoli, J. C.; Racin, M.; Bai, L.; Li, L.; Jiang, W.; Yang, X. Nanoparticles encapsulating nitrosylated maytansine to enhance radiation therapy. ACS nano 2020, 14 (2), 1468-1481. (76) Xue, Z.; Jiang, M.; Liu, H.; Zeng, S.; Hao, J. Low dose soft X-ray-controlled deep-tissue long-lasting NO release of persistent luminescence nanoplatform for gas-sensitized anticancer therapy. Biomaterials 2020, 263, 120384. (77) Zhang, F.; Liu, S.; Zhang, N.; Kuang, Y.; Li, W.; Gai, S.; He, F.; Gulzar, A.; Yang, P. X-ray-triggered NO-released Bi–SNO nanoparticles: all-in-one nano-radiosensitizer with photothermal/gas therapy for enhanced radiotherapy. Nanoscale 2020, 12 (37), 19293-19307. (78) Sun, T.; Dasgupta, A.; Zhao, Z.; Nurunnabi, M.; Mitragotri, S. Physical triggering strategies for drug delivery. Adv. Drug Del. Rev. 2020, 158, 36-62. DOI: https://doi.org/10.1016/j.addr.2020.06.010. (79) Xiao, Y.; Guo, X.; Huang, H.; Yang, Q.; Huang, A.; Zhong, C. Synthesis of MIL-88B(Fe)/Matrimid mixed-matrix membranes with high hydrogen permselectivity. RSC Advances 2015, 5 (10), 7253-7259, 10.1039/C4RA13727B. DOI: 10.1039/C4RA13727B. (80) Wu, M. X.; Yang, Y. W. Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29 (23), 1606134. (81) Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38 (5), 1294-1314. Chughtai, A. H.; Ahmad, N.; Younus, H. A.; Laypkov, A.; Verpoort, F. Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev. 2015, 44 (19), 6804-6849. Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255 (15-16), 1791-1823. (82) Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 2012, 112 (2), 673-674. (83) Giménez-Marqués, M.; Hidalgo, T.; Serre, C.; Horcajada, P. Nanostructured metal–organic frameworks and their bio-related applications. Coord. Chem. Rev. 2016, 307, 342-360. (84) Huxford, R. C.; Della Rocca, J.; Lin, W. Metal–organic frameworks as potential drug carriers. Curr. Opin. Chem. Biol. 2010, 14 (2), 262-268. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Metal–organic frameworks in biomedicine. Chem. Rev. 2012, 112 (2), 1232-1268. (85) Horcajada, P.; Serre, C.; Vallet‐Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal–organic frameworks as efficient materials for drug delivery. Angew. Chem. 2006, 118 (36), 6120-6124. (86) Park, J.; Jiang, Q.; Feng, D.; Mao, L.; Zhou, H.-C. Size-controlled synthesis of porphyrinic metal–organic framework and functionalization for targeted photodynamic therapy. Journal of the American Chemical Society 2016, 138 (10), 3518-3525. (87) Wang, L.; Zhang, J.-W.; Li, C.; Sun, J.-L.; Wang, G.-M.; Chen, Y.-Z. Novel CoNi-metal–organic framework crystal-derived CoNi@C: synthesis and effective cascade catalysis. Dalton Transactions 2020, 49 (30), 10567-10573, 10.1039/D0DT01558J. DOI: 10.1039/D0DT01558J. Chen, Y.-Z.; Zhang, R.; Jiao, L.; Jiang, H.-L. Metal–organic framework-derived porous materials for catalysis. Coord. Chem. Rev. 2018, 362, 1-23. (88) Serre, C.; Mellot-Draznieks, C.; Surblé, S.; Audebrand, N.; Filinchuk, Y.; Férey, G. Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks. Science 2007, 315 (5820), 1828-1831. DOI: 10.1126/science.1137975. (89) Mukherjee, P. K.; Harwansh, R. K.; Bhattacharyya, S. Chapter 10 - Bioavailability of Herbal Products: Approach Toward Improved Pharmacokinetics. In Evidence-Based Validation of Herbal Medicine, Mukherjee, P. K. Ed.; Elsevier, 2015; pp 217-245. (90) Berkland, C.; King, M.; Cox, A.; Kim, K. K.; Pack, D. W. Precise control of PLG microsphere size provides enhanced control of drug release rate. Journal of controlled release 2002, 82 (1), 137-147. (91) Naha, P. C.; Kanchan, V.; Manna, P. K.; Panda, A. K. Improved bioavailability of orally delivered insulin using Eudragit-L30D coated PLGA microparticles. Journal of Microencapsulation 2008, 25 (4), 248-256. DOI: 10.1080/02652040801903843. Burgess, D. J.; Hickey, A. J. Microspheres: design and manufacturing. In Injectable dispersed systems, CRC Press, 2005; pp 337-386. (92) Giri, T. K.; Choudhary, C.; Alexander, A.; Badwaik, H.; Tripathi, D. K. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery. Saudi Pharmaceutical Journal 2013, 21 (2), 125-141. (93) Han, S.; Zhang, X.; Li, M. Progress in research and application of PLGA embolic microspheres. Front. Biosci. 2016, 21, 931-940. (94) Koerner, J.; Horvath, D.; Groettrup, M. Harnessing Dendritic Cells for Poly (D,L-lactide-co-glycolide) Microspheres (PLGA MS)-Mediated Anti-tumor Therapy. Front. Immunol. 2019, 10, 707-707. DOI: 10.3389/fimmu.2019.00707 PubMed. (95) Bodmer, D.; Kissel, T.; Traechslin, E. Factors influencing the release of peptides and proteins from biodegradable parenteral depot systems. Journal of Controlled Release 1992, 21 (1), 129-137. DOI: https://doi.org/10.1016/0168-3659(92)90014-I. (96) Jiang, W.; Gupta, R. K.; Deshpande, M. C.; Schwendeman, S. P. Biodegradable poly (lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv. Drug Del. Rev. 2005, 57 (3), 391-410. (97) Jeh, H.; Lu, S.; George, S. Encapsulation of PROLI/NO in biodegradable microparticles. Journal of microencapsulation 2004, 21 (1), 3-13. (98) Gomes, A. J.; Barbougli, P. A.; Espreafico, E. M.; Tfouni, E. trans-[Ru (NO)(NH3) 4 (py)](BF4) 3· H2O encapsulated in PLGA microparticles for delivery of nitric oxide to B16-F10 cells: Cytotoxicity and phototoxicity. J. Inorg. Biochem. 2008, 102 (4), 757-766. (99) Major, T. C.; Brant, D. O.; Reynolds, M. M.; Bartlett, R. H.; Meyerhoff, M. E.; Handa, H.; Annich, G. M. The attenuation of platelet and monocyte activation in a rabbit model of extracorporeal circulation by a nitric oxide releasing polymer. Biomaterials 2010, 31 (10), 2736-2745. (100) Yoo, J.-W.; Choe, E.-S.; Ahn, S.-M.; Lee, C. H. Pharmacological activity and protein phosphorylation caused by nitric oxide-releasing microparticles. Biomaterials 2010, 31 (3), 552-558. (101) Yoo, J. W.; Lee, J. S.; Lee, C. H. Characterization of nitric oxide‐releasing microparticles for the mucosal delivery. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2010, 92 (4), 1233-1243. (102) Cai, W.; Wu, J.; Xi, C.; Meyerhoff, M. E. Diazeniumdiolate-doped poly (lactic-co-glycolic acid)-based nitric oxide releasing films as antibiofilm coatings. Biomaterials 2012, 33 (32), 7933-7944. (103) Verma, R. K.; Singh, A. K.; Mohan, M.; Agrawal, A. K.; Verma, P. R.; Gupta, A.; Misra, A. Inhalable microparticles containing nitric oxide donors: saying NO to intracellular Mycobacterium tuberculosis. Mol. Pharm. 2012, 9 (11), 3183-3189. (104) Soni, S. D.; Song, W.; West, J. L.; Khera, M. Nitric Oxide‐Releasing Polymeric Microspheres Improve Diabetes‐Related Erectile Dysfunction. The journal of sexual medicine 2013, 10 (8), 1915-1925. (105) Handa, H.; Brisbois, E. J.; Major, T. C.; Refahiyat, L.; Amoako, K. A.; Annich, G. M.; Bartlett, R. H.; Meyerhoff, M. E. In vitro and in vivo study of sustained nitric oxide release coating using diazeniumdiolate-doped poly (vinyl chloride) matrix with poly (lactide-co-glycolide) additive. Journal of Materials Chemistry B 2013, 1 (29), 3578-3587. (106) Gomes, A. J.; Espreafico, E. M.; Tfouni, E. trans-[Ru (NO) Cl (cyclam)](PF6) 2 and [Ru (NO)(Hedta)] Incorporated in PLGA Nanoparticles for the Delivery of Nitric Oxide to B16–F10 Cells: Cytotoxicity and Phototoxicity. Mol. Pharm. 2013, 10 (10), 3544-3554. (107) Verma, R. K.; Agrawal, A. K.; Singh, A. K.; Mohan, M.; Gupta, A.; Gupta, P.; Gupta, U. D.; Misra, A. Inhalable microparticles of nitric oxide donors induce phagosome maturation and kill Mycobacterium tuberculosis. Tuberculosis 2013, 93 (4), 412-417. (108) Chung, M. F.; Liu, H. Y.; Lin, K. J.; Chia, W. T.; Sung, H. W. A pH‐responsive carrier system that generates NO bubbles to trigger drug release and reverse P‐glycoprotein‐mediated multidrug resistance. Angew. Chem. Int. Ed. 2015, 54 (34), 9890-9893. (109) Nurhasni, H.; Cao, J.; Choi, M.; Kim, I.; Lee, B. L.; Jung, Y.; Yoo, J.-W. Nitric oxide-releasing poly (lactic-co-glycolic acid)-polyethylenimine nanoparticles for prolonged nitric oxide release, antibacterial efficacy, and in vivo wound healing activity. International journal of nanomedicine 2015, 10, 3065. (110) Lautner, G.; Meyerhoff, M. E.; Schwendeman, S. P. Biodegradable poly (lactic-co-glycolic acid) microspheres loaded with S-nitroso-N-acetyl-D-penicillamine for controlled nitric oxide delivery. Journal of Controlled Release 2016, 225, 133-139. (111) Regmi, S.; Cao, J.; Pathak, S.; Gupta, B.; Poudel, B. K.; Tung, P. T.; Yook, S.; Park, J.-B.; Yong, C. S.; Kim, J. O. A three-dimensional assemblage of gingiva-derived mesenchymal stem cells and NO-releasing microspheres for improved differentiation. International journal of pharmaceutics 2017, 520 (1-2), 163-172. (112) Lin, Y. J.; Chen, C. C.; Chi, N. W.; Nguyen, T.; Lu, H. Y.; Nguyen, D.; Lai, P. L.; Sung, H. W. In Situ Self‐Assembling Micellar Depots that Can Actively Trap and Passively Release NO with Long‐Lasting Activity to Reverse Osteoporosis. Adv. Mater. 2018, 30 (22), 1705605. (113) Hlaing, S. P.; Kim, J.; Lee, J.; Hasan, N.; Cao, J.; Naeem, M.; Lee, E. H.; Shin, J. H.; Jung, Y.; Lee, B.-L. S-Nitrosoglutathione loaded poly (lactic-co-glycolic acid) microparticles for prolonged nitric oxide release and enhanced healing of methicillin-resistant Staphylococcus aureus-infected wounds. Eur. J. Pharm. Biopharm. 2018, 132, 94-102. (114) Hasan, N.; Cao, J.; Lee, J.; Naeem, M.; Hlaing, S. P.; Kim, J.; Jung, Y.; Lee, B.-L.; Yoo, J.-W. PEI/NONOates-doped PLGA nanoparticles for eradicating methicillin-resistant Staphylococcus aureus biofilm in diabetic wounds via binding to the biofilm matrix. Materials Science and Engineering: C 2019, 103, 109741. (115) Cao, J.; Su, M.; Hasan, N.; Lee, J.; Kwak, D.; Kim, D. Y.; Kim, K.; Lee, E. H.; Jung, J. H.; Yoo, J.-W. Nitric Oxide-Releasing Thermoresponsive Pluronic F127/Alginate Hydrogel for Enhanced Antibacterial Activity and Accelerated Healing of Infected Wounds. Pharmaceutics 2020, 12 (10), 926. (116) Lin, Y. J.; Chen, C. C.; Nguyen, D.; Su, H. R.; Lin, K. J.; Chen, H. L.; Hu, Y. J.; Lai, P. L.; Sung, H. W. Biomimetic Engineering of a Scavenger‐Free Nitric Oxide‐Generating/Delivering System to Enhance Radiation Therapy. Small 2020, 16 (23), 2000655. (117) Uchida, T.; Yoshida, K.; Ninomiya, A.; Goto, S. Optimization of preparative conditions for polylactide (PLA) microspheres containing ovalbumin. Chemical and pharmaceutical bulletin 1995, 43 (9), 1569-1573. Mi, F.-L.; Lin, Y.-M.; Wu, Y.-B.; Shyu, S.-S.; Tsai, Y.-H. Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior. Biomaterials 2002, 23 (15), 3257-3267. Furlan, M.; Kluge, J.; Mazzotti, M.; Lattuada, M. Preparation of biocompatible magnetite–PLGA composite nanoparticles using supercritical fluid extraction of emulsions. The Journal of Supercritical Fluids 2010, 54 (3), 348-356. Shiga, K.; Muramatsu, N.; Kondo, T. Preparation of poly (D, L‐lactide) and copoly (lactide‐glycolide) microspheres of uniform size. Journal of pharmacy and pharmacology 1996, 48 (9), 891-895. (118) Lai, M. K.; Tsiang, R. C. C. Microencapsulation of acetaminophen into poly(L-lactide) by three different emulsion solvent-evaporation methods. Journal of Microencapsulation 2005, 22 (3), 261-274. DOI: 10.1080/02652040500100261. (119) Vysloužil, J.; Doležel, P.; Kejdušová, M.; Mašková, E.; Mašek, J.; Lukáč, R.; Košťál, V.; Vetchý, D.; Dvořáčková, K. Influence of different formulations and process parameters during the preparation of drug-loaded PLGA microspheres evaluated by multivariate data analysis. Acta Pharmaceutica 2014, 64 (4), 403-417. DOI: doi:10.2478/acph-2014-0032. (120) Liang, Z.; Ni, R.; Zhou, J.; Mao, S. Recent advances in controlled pulmonary drug delivery. Drug Discovery Today 2015, 20 (3), 380-389. (121) Chung, C.-W.; Liao, B.-W.; Huang, S.-W.; Chiou, S.-J.; Chang, C.-H.; Lin, S.-J.; Chen, B.-H.; Liu, W.-L.; Hu, S.-H.; Chuang, Y.-C. Magnetic Responsive Release of Nitric Oxide from an MOF-Derived Fe3O4@ PLGA Microsphere for the Treatment of Bacteria-Infected Cutaneous Wound. ACS Applied Materials & Interfaces 2022. (122) Andrews, J. M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (suppl_1), 5-16. DOI: 10.1093/jac/48.suppl_1.5 (acccessed 6/13/2022). |