|
[1] Al-Harkan, I. M., & Qamhan, A. A. (2019). Optimize Unrelated Parallel Machines Scheduling Problems With Multiple Limited Additional Resources, Sequence- Dependent Setup Times and Release Date Constraints. Ieee Access, 7, 171533- 171547. doi:10.1109/Access.2019.2955975 [2] Bai, D., Zhang, Z-H., & Zhang, Q. (2016). Flexible open shop scheduling problem to minimize makespan. Computers & Operations Research, 67, 207-215. doi:10.1016/j.cor.2015.10.012 [3] Che, A., Wu, X. Q., Peng, J., & Yan, P. Y. (2017). Energy-efficient bi-objective single- machine scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183. doi:10.1016/j.cor.2017.04.004 [4] Cheng, C. Y., & Huang, L. W. (2017). Minimizing total earliness and tardiness through unrelated parallel machine scheduling using distributed release time control. Journal of Manufacturing Systems, 42, 1-10. doi:10.1016/j.jmsy.2016.10.005 [5] Costa, A., Cappadonna, F. A., & Fichera, S. (2017). A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem. Journal of Intelligent Manufacturing, 28(6), 1269-1283. doi:10.1007/s10845-015-1049-1 [6] Davari, M., Ranjbar, M., De Causmaecker, P., & Leus, R. (2020). Minimizing makespan on a single machine with release dates and inventory constraints. European Journal of Operational Research, 286(1), 115-128. doi:10.1016/j.ejor.2020.03.029 [7] Ding, H. J., & Gu, X. S. (2020). Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem. Computers & Operations Research, 121, 15. doi:10.1016/j.cor.2020.104951 [8] Fleszar, K., & Hindi, K. S. (2018). Algorithms for the unrelated parallel machine scheduling problem with a resource constraint. European Journal of Operational Research, 271(3), 839-848. doi:10.1016/j.ejor.2018.05.056 [9] Fleszar, Krzysztof, Charalambous, Christoforos, & Hindi, Khalil S. (2011). A variable neighborhood descent heuristic for the problem of makespan minimisation on unrelated parallel machines with setup times. Journal of Intelligent Manufacturing, 23(5), 1949-1958. doi:10.1007/s10845-011-0522-8 [10] Fridman, I., Pesch, E., & Shafransky, Y. (2020). Minimizing maximum cost for a single machine under uncertainty of processing times. European Journal of Operational Research, 286(2), 444-457. doi:10.1016/j.ejor.2020.03.052 [11] Hansen, P., Mladenovic, N., & Perez-Britos, D. (2001). Variable neighborhood decomposition search. Journal of Heuristics, 7(4), 335-350. doi:10.1023/a:1011336210885 [12] Holland, John H. (1975). Adaptation in natural and artificial systems. an introductory analysis with applications to biology, control and artificial intelligence. anas. [13] Hosseinabadi, A. A. R., Vahidi, J., Saemi, B., Sangaiah, A. K., & Elhoseny, M. (2019). Extended Genetic Algorithm for solving open-shop scheduling problem. Soft Computing, 23(13), 5099-5116. doi:10.1007/s00500-018-3177-y [14] Hsu, Tzu-Han, et al. Development of a Cloud-based Advanced Planning and Scheduling System.Procedia Manufacturing, vol. 17, 2018, pp. 427-434. doi: 10.1016/j.promfg.2018.10.066. [15] Huang, Hsiang-Hsi, et al. A research on problems of mixed-line production and the re-scheduling.Robotics and Computer-Integrated Manufacturing, vol. 29, no. 3, 2013, pp. 64-72. doi: 10.1016/j.rcim.2012.04.014. [16] Joo, C. M., & Kim, B. S. (2015). Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability. Computers & Industrial Engineering, 85, 102-109. doi:10.1016/j.cie.2015.02.029 [17] Jouhari, H., Lei, D. M., Al-qaness, M. A. A., Abd Elaziz, M., Ewees, A. A., & Farouk, O. (2019). Sine-Cosine Algorithm to Enhance Simulated Annealing for Unrelated Parallel Machine Scheduling with Setup Times. Mathematics, 7(11), 18. doi:10.3390/math7111120 [18] Kim, J. G., Song, S., & Jeong, B. (2020). Minimising total tardiness for the identical parallel machine scheduling problem with splitting jobs and sequence- dependent setup times. International Journal of Production Research, 58(6), 1628-1643. doi:10.1080/00207543.2019.1672900 [19] Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671 [20] Komaki, G. M., Teymourian, E., & Kayvanfar, V. (2016). Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems. International Journal of Production Research, 54(4), 963- 983. doi:10.1080/00207543.2015.1035815 [21] Kundakci, N., & Kulak, O. (2016). Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Computers & Industrial Engineering, 96, 31-51. doi:10.1016/j.cie.2016.03.011 [22] Li, X. Y., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. International Journal of Production Economics, 174, 93-110. doi:10.1016/j.ijpe.2016.01.016 [23] Lin, D. Y., & Huang, T. Y. A Hybrid Metaheuristic for the Unrelated Parallel Machine Scheduling Problem.Mathematics, vol. 9, no. 7, 2021, Article 768. doi: 10.3390/math9070768. [24] Lin, S. W., & Ying, K. C. (2017). Uniform Parallel-Machine Scheduling for Minimizing Total Resource Consumption With a Bounded Makespan. Ieee Access, 5, 15791-15799. doi:10.1109/access.2017.2735538 [25] Machine scheduling problem with sequence dependent setup times, precedence constraints and machine eligibility restrictions. Computers & Industrial Engineering, 98, 40-52. doi:10.1016/j.cie.2016.05.020 [26] Marinho Diana, Rodney Oliveira, & de Souza, Se?rgio Ricardo. (2020). Analysis of variable neighborhood descent as a local search operator for total weighted tardiness problem on unrelated parallel machines. Computers & Operations Research, 117. doi:10.1016/j.cor.2020.104886 [27] Mir, M. S. S., & Rezaeian, J. (2016). A robust hybrid approach based on particle swarm optimization and genetic algorithm to minimize the total machine load on unrelated parallel machines. Applied Soft Computing, 41, 488-504. doi:10.1016/j.asoc.2015.12.035 [28] Ozbak?r, L., Yenisey, M., & Ekinci, E. (2015). Open shop scheduling problem with a multi-skills resource constraint: a genetic algorithm and an ant colony optimisation approach. International Journal of Production Research, 53(1), 292-310. [29] Pang, Jihong, et al. A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing. Computers & Industrial Engineering, vol. 123, 2018, pp. 54-66. doi:10.1016/j.cie.2018.06.017 [30] Pinedo, M. L. (2012). Scheduling: Theory, Algorithms, and Systems (4th ed.). Springer. [31] Ruiz, R., & Stutzle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009 [32] Santos, H. G., Toffolo, T. A. M., Silva, Cltf, & Vanden Berghe, G. (2019). Analysis of stochastic local search methods for the unrelated parallel machine scheduling problem. International Transactions in Operational Research, 26(2), 707-724. doi:10.1111/itor.12316 [33] Soares, L. C. R., & Carvalho, M. A. M. (2020). Biased random-key genetic algorithm for scheduling identical parallel machines with tooling constraints. European Journal of Operational Research, 285(3), 955-964. doi:10.1016/j.ejor.2020.02.047 [34] Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times. European Journal of Operational Research, 211(3), 612-622. doi:10.1016/j.ejor.2011.01.011 [35] Wang, I. L., Yang, T. H., & Chang, Y. B. (2012). Scheduling two-stage hybrid flow shops with parallel batch, release time, and machine eligibility constraints. Journal of Intelligent Manufacturing, 23(6), 2271-2280. doi:10.1007/s10845- 011-0571-z [36] Wang, X. M., Li, Z. T., Chen, Q. X., & Mao, N. (2020). Meta-heuristics for unrelated parallel machines scheduling with random rework to minimize expected total weighted tardiness. Computers & Industrial Engineering, 145. doi:UNSP 10650510.1016/j.cie.2020.106505 [37] Ying, K. C., & Lin, S. W. (2017). Minimizing Makespan in Distributed Blocking Flowshops Using Hybrid Iterated Greedy Algorithms. Ieee Access, 5, 15694- 15705. doi:10.1109/access.2017.2732738 [38] Yu, C. L., Semeraro, Q., & Matta, A. (2018). A genetic algorithm for the hybrid flow shop scheduling with unrelated machines and machine eligibility. Computers & Operations Research, 100, 211-229. doi:10.1016/j.cor.2018.07.025 [39] 王慶煌(2022),應用基因演算法於流程式排程之研究-以J公司為例,國立雲林科技大學 [40] 王駿威(2014),應用即時交貨啟發式演算法於最小化 訂單延遲與提早完工之排程問題 -以精密刀具加工製造業為例,東海大學 [41] 吳民友(2016),多目標隨機排程最佳化:以台灣汽車零組件製造商為例,國立成功大學 [42] 李家岩, 洪佑鑫(2022),製造數據科學:邁向智慧製造與數位決策,前程文化 [43] 林則孟(2012),生產計畫與管理,華泰文化 [44] 紀進鎧(2014),觸控感應面板廠導入先進規劃排程系統以解決人力排程問題—以A公司為例,國立成功大學 [45] 郭建男(2009),基因演算法應用於面板產業Cell製程後段排程之研究—以H公司為例,國立成功大學 [46] 陳建宏(2013),整合元件製造廠導入先進規劃與排程系統之研究-以A公司為例,國立臺北科技大學 [47] 陳嘉杰(2005),自動派送系統導入光電面板產業製造之研究,國立成功大學 [48] 陳澤明(2007),航太製造業導入先進規劃與排程系統之個案研究,逢甲大學 [49] 蔡沛霖(2022),可拆分訂單生產排程問題之研究,國立清華大學 [50] 謝仲為(2002),先進規劃與排程系統應用於TFT-LCD產業之研究,東海大學
|