帳號:guest(3.143.214.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):古巧玉
作者(外文):Ku, Chiao-Yu
論文名稱(中文):應用系統模擬優化先進封裝製程自動化佈局規劃
論文名稱(外文):Utilizing System Simulation to Optimize Advanced Packaging Process Automated Layout
指導教授(中文):邱銘傳
指導教授(外文):Chiu, Ming-Chuan
口試委員(中文):陳勝一
王小璠
徐昕煒
口試委員(外文):Chen, Sheng-I
Wang, Hsiao-Fan
Hsu, Hsin-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系碩士在職專班
學號:109036506
出版年(民國):110
畢業學年度:110
語文別:中文
論文頁數:59
中文關鍵詞:半導體自動化傳送系統設施佈局系統模擬
外文關鍵詞:semiconductorAMHSlayoutsimulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:681
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
全世界半導體產業逐漸成熟,由於台灣地小人稠如何最有效率的運用空間建置晶圓廠,本研究透過系統模擬分為分期集中配置、製程機台集中配置兩種在不同情境條件下,不同設施規劃佈局下自動化傳送系統(Automatic Material Handling System, AMHS)效能差異,不同的設施規劃導入自動化傳送系統對於晶圓廠生產造成的影響,進而找出在特定情境下最佳佈局。
藉由相同機台對應人員導入以及自動化導入需求動線透過工程圖紙繪製後比較兩者利用空間自動化導入可提升空間利用率37%,本研究主要希望能提供晶圓廠建廠導入自動化傳送系統前製程機台佈局方法,基於研究假設條件設定狀態下分析結果顯示製程機中配置機台佈局天車系統第一期導入效益平均提升1.9%、生產週期平均縮短0.4%,全廠導入後效益平均提升7.0%、生產週期平均縮短1.2%,此外透過產品比例調整變異分析後亦得證製程集中配置優於分期集中配置,透過此研究可建議未來在整廠規劃提前考量製程集中配置以利後續工廠運營效能提升。本研究可作為(1)優化不同佈局之搬運系統天車數量與(2)產品組合投片對產能影響的決策分析系統。
The semiconductor industry is well-established. How to further improve efficiency of production becomes a critical issue. This study compares the performance variances under layout configurations and product portfolio to ensure efficient use of space in a fabrication. This research compares personnel requirements and import automation requirements space automatic introduction of space can improve the space utilization rate by 37%, the simulation results show that the phase1 process concentration layout has an average increase of 1.9% and reduction of 0.4% in the production cycle time, while phase2 average increase of 7.0% and reduction of 1.2%. In addition, the proposed method proves that the centralized layout configuration of the process is better after adjusting the variation analysis of the product ratio. It is suggested that the centralized configuration of the process can be considered in the early planning stage to facilitate the improvement of performance. This research can be served as a decision analysis system for (1) optimizing the number of cranes in different layouts of the handling system and (2) the impact of product portfolio on production capacity.
目錄
摘要 2
ABSTRACT 3
誌謝 4
第1章 緒論 8
1-1 研究背景 8
1-2 研究動機 8
1-3 研究目的 8
1-3-1 提升空間利用率 9
1-3-2 提升自動化效益 9
1-3-3 減短產品生產週期 10
1-4 研究範圍與限制 10
1-5 研究流程 11
第2章 文獻探討 13
2-1 自動化傳送系統 13
2-2 系統模擬 17
2-3 設施規劃佈局 21
第3章 研究方法 25
3-1 研究架構 25
3-2 模擬建置 26
3-3 模型建置方法 28
第4章 個案研究 30
4-1 個案公司簡介 30
4-2 個案研究架構 30
4-3 個案基本資訊 31
4-3-1 個案研究問題 31
4-3-2 個案自動化設備運行模式 32
4-3-3 自動化路徑配置 35
4-3-4 自動化搬送流程 36
4-3-5 個案搬送生產流程 36
4-4 個案分析結果 42
第5章 結論 54
5-1 結論 54
5-2 未來研究方向 54
參考文獻 56

參考文獻
英文文獻
1.Aresi, L., Dauzère-Pérès, S., Yugma, C., Ndiaye, M., & Rullière, L. (2019, September). AMHS Vehicle Management Policies in Semiconductor Manufacturing: A Short Review. In 2019 International Conference on Industrial Engineering and Systems Management (IESM) (pp. 1-6). IEEE.
2.Bahri, N., Reiss, J., & Doherty, B. (2001, October). A comparison of unified vs. segregated automated material handling systems for 300 mm fabs. In 2001 IEEE International Symposium on Semiconductor Manufacturing. ISSM 2001. Conference Proceedings (Cat. No. 01CH37203) (pp. 3-6). IEEE.
3.Bartlett, K., Lee, J., Ahmed, S., Nemhauser, G., Sokol, J. and Na, B. (2014). Congestion-aware dynamic routing in automated material handling systems. Computers & Industrial Engineering, 70, 176–182.
4.Bartholdi III, J. J., & Platzman, L. K. (1989). Decentralized control of automated guided vehicles on a simple loop. IIE transactions, 21(1), 76-81.
5.Ben-Salem, A., Yugma, C., Troncet, E., & Pinaton, J. (2017, December). A simulation-based approach for an effective AMHS design in a legacy semiconductor manufacturing facility. In 2017 Winter Simulation Conference (WSC) (pp. 3600-3611). IEEE.
6.Bozer, Y. A., & Srinivasan, M. M. (1989). Tandem configurations for AGV systems offer simplicity and flexibility. Industrial Engineering, 21(2), 23-27.
7.Campbell, E., Wright, R., Cheatham, J., Schulz, M. and Berry, J.L. (2000). Simulation modeling for 300mm semiconductor factories, Solid State Technology, 95-106.
8.Chaabane, A. B., Dauzère-Pérès, S., Yugma, C., Rullière, L., & Lamiable, G. (2013, December). Analyzing the impact of key parameters of vehicle management policies in a unified AMHS. In 2013 Winter Simulations Conference (WSC) (pp. 3818-3828). IEEE.
9.Chang, K.-H., Huang, Y.-H., & Yang, S.-P. (2014). Vehicle fleet sizing for automated material handling systems to minimize cost subject to time constraints. IIE Transactions 46(3), 301–312.
10.Moorthy, R. L., Hock-Guan, W., Wing-Cheong, N., & Chung-Piaw, T. (2003). Cyclic deadlock prediction and avoidance for zone-controlled AGV system. International Journal of Production Economics, 83(3), 309-324.
11.Boden, P., Rank, S., & Schmidt, T. (2021, March). Control of heterogenous AMHS in semiconductor industry under consideration of dynamic transport carrier transfers. In 2021 22nd IEEE International Conference on Industrial Technology. (Vol. 1, pp. 1403-1408). IEEE.
12.Egbelu, P. J., & Tanchoco, J. (1986). Potentials for bi-directional guide-path for automated guided vehicle based systems. International Journal of Production Research, 24(5), 1075-1097.
13.Kim, H., & Lim, D. E. (2018, October). Deep-learning-based storage-allocation approach to improve the AMHS throughput capacity in a semiconductor fabrication facility. In Asian Simulation Conference (pp. 232-240). Springer, Singapore.
14.Heger, J., Bani, H., & Scholz-Reiter, B. (2012). Improving production scheduling with machine learning. Artificial Intelligence and Logistics, 43.
15.Johnson, M. E. (2001). Modelling empty vehicle traffic in AGVS design. International Journal of Production Research, 39(12), 2615-2633.
16.Kurosaki, R., Nagao, N., Komada, H., Watanabe, Y., & Yano, H. (1997, October). AMHS for 300 mm wafer. In 1997 IEEE International Symposium on Semiconductor Manufacturing Conference Proceedings (Cat. No. 97CH36023) (pp. D13-D16). IEEE.
17.Lin, J. T., Wang, F. K., & Yen, P. Y. (2001). Simulation analysis of dispatching rules for an automated interbay material handling system in wafer fab. International Journal of Production Research, 39(6), 1221-1238.
18.Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., & Rose, O. (2011). A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations. Journal of scheduling, 14(6), 583-599.
19.Ndiaye, M. A. (2018). Aide à la décision pour la conception et la gestion de systèmes de transport automatisés complexes (Doctoral dissertation, Lyon).
20.Peters, B. A., & Yang, T. (1997). Integrated facility layout and material handling system design in semiconductor fabrication facilities. IEEE Transactions on Semiconductor manufacturing, 10(3), 360-369.
21.Pierce, N. G., & Stafford, R. (1994, December). Modeling and simulation of material handling for semiconductor wafer fabrication. In Proceedings of Winter Simulation Conference (pp. 900-906). IEEE.
22.Plata, J. J. (1997, October). 300 mm fab design-a total factory perspective. In 1997 IEEE International Symposium on Semiconductor Manufacturing Conference Proceedings (Cat. No. 97CH36023) (pp. A5-A8). IEEE.
23.Hong, S., Hwang, I., & Jang, Y. J. (2022). Practical Q-learning-based Route-guidance and Vehicle Assignment for OHT Systems in Semiconductor Fabs. IEEE Transactions on Semiconductor Manufacturing.
24.Schmaler, R., Schmidt, T., Schoeps, M., Luebke, J., Hupfer, R., & Schlaus, N. (2017, December). Simulation based evaluation of different empty vehicle management strategies with considering future transport jobs. In 2017 Winter Simulation Conference (WSC) (pp. 3576-3587). IEEE.
25.Schulz, M., Stanley, T. D., Renelt, B., & Sturm, R. (2000, December). Simulation based decision support for future 300 mm automated material handling. In 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165) (Vol. 2, pp. 1518-1522). IEEE.
26.Wang, C. N., & Liao, D. Y. (2002, December). Prioritized Automatic material handling services in 300 mm foundry manufacturing. In Semiconductor Manufacturing Technology Workshop, 2002 (pp. 109-114). IEEE.
27.Wu, L. H., Mok, P. Y., & Zhang, J. (2011). An adaptive multi-parameter based dispatching strategy for single-loop interbay material handling systems. Computers in Industry, 62(2), 175-186.

中文文獻
1.徐淑如(2018).作業管理。華泰文化事業股份有限公司,台北市.
2.洪子晏(2019) 工業 3.5 之智慧製造系統-以 TFT-LCD 陣列製造動態排程與派工為實證研究。國立清華大學工業工程與工程管理學系博士論文).
3.顏豪君(2006).快速評估 12 吋晶圓廠 AMHS 的模擬方法
4.林則孟(2001).系統模擬理論與應用。滄海書局。台中市。
5.王嘉男、許峰源. (2010). 分析 Conveyor 與 OHT 在生產傳輸上的差異性. 工程科技與教育學刊 第七卷 第三期.
6.林聖昆(2009).自動化物料搬運系統之動態車數分析
7.魏銘佑. (2003).先遇到先服務之分散式控制自動物料搬運系統之改善研究.(碩士), 雲林科技大學, 雲林縣.
8.陳紹偉 (1999).12 吋 IC 代工廠自動化物料搬運系統之系統模擬與派工
法則的研究,國立台灣大學機械工程研究所碩士論文。
9.彌費科技網頁(2022)雙層OHT軌道示意資訊(https://meetfuture.com/XiTong.html?isClick=2)
10.華景電通法說會網頁(2021)剖面示意圖
(https://www.brillian.com.tw/%E6%8A%95%E8%B3%87%E4%BA%BA%E5%B0%88%E5%8D%80/%E8%B2%A1%E5%8B%99%E8%B3%87%E8%A8%8A/%E6%B3%95%E4%BA%BA%E8%AA%AA%E6%98%8E%E6%9C%83/%E8%8F%AF%E6%99%AF%E9%9B%BB%E9%80%9A2021%E6%B3%95%E4%BA%BA%E8%AA%AA%E6%98%8E%E6%9C%83%E7%B0%A1%E5%A0%B11100819.pdf)
(此全文20270726後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *