帳號:guest(18.119.129.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張本源
作者(外文):Zhang, Ben-Yuan
論文名稱(中文):複合微流體系統中的阻尼現象
論文名稱(外文):Damping Phenomena in Microfluidic Multidevice System
指導教授(中文):北森武彥
指導教授(外文):Kitamori, Takehiko
口試委員(中文):陳致真
森川響二朗
三宅亮
口試委員(外文):Chen, Chih-Chen
Morikawa, Kyojiro
Miyake, Ryo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:109035520
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:62
中文關鍵詞:連續流微流體系統控制晶片上的工廠
外文關鍵詞:Continuous flow microfluidic system controlfactory on chips
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
與傳統化工廠相比,在微反應器中進行化學合成具有許多優點,且學術界和工業界都已進行了許多試驗。在我們團隊的設計中,玻璃微流控芯片以串聯實現靈活的設計可能性,並以並聯解決微反應器固有的低通量問題。在微反應器中,進料流量控制是必不可少的,因為成功的化學反應依賴於精確的濃度控制。在流量傳感器的幫助下,我們注意到不同尺寸的微通道/管道對注射泵上相同的流量設置變化的響應是不同的。我們還注意到,來自注射泵步進運動的高頻雜訊在不同尺寸的微通道/管道中分別受到不同程度的阻尼。為了了解不同微流控通道/管材尺寸所帶來的不同響應模式,在本研究中,將量化不同管材尺寸/設置的微流控通道/管材對流速設置變化和高頻信號阻尼性能的響應,基於流體阻力和微流道體積的假設將得到驗證。
Chemical synthesizing in microreactors has many merits over conventional chemical plants, and many trials have been done in both the academic world and industry. In our team’s design, glass microfluidic chips are connected serially to realize flexible design, and parallelly to solve the intrinsic low-through problem of microreactors. In microreactors, feed flow control is essential because successful chemical reactions rely on precise concentration control. With the aid of flow sensors, we noticed that the response to the same flow rate setting change on syringe pumps is different among microchannels/tubing of different dimensions. We also noticed that the high-frequency signals from the step motion of syringe pumps are damped differently in microchannels/tubing of different dimensions. In order to understand the different response patterns of different microfluidic channel/tubing dimensions, in this study, the response to flow rate setting changes and high-frequency signal damping performance in microfluidic channel/tubing of different tubing dimensions/settings will be quantitated, and hypotheses based on fluidic resistance and tubing volume will be validated.
Abstract i
LIST OF FIGURES i
LIST OF TABLES iii
NOMENCLATURE iv
CHAPTER I. INTRODUCTION - 1 -
1.1 Microfluidics Basics - 1 -
1.1.1 Brief History - 1 -
1.1.2 Physical Properties in Micro-space - 2 -
1.1.3 Methodology: MUO and CFCP - 4 -
1.1.4 Chemical Synthesis in Micro-Space - 5 -
1.2 Microfluidic Multidevice System - 8 -
1.2.1 Parameters to be controlled - 8 -
1.2.2 Serial and Parallel connection - 8 -
1.2.3 Flow Control Method - 9 -
1.3 Damping in Hydraulic Systems - 13 -
1.3.1 Definition of Damping - 13 -
1.3.2 Damping Mechanism in a Mobile Hydraulic System - 14 -
1.4 Motivation and Goals - 15 -
1.4.1 Clarification of Phenomena in Flow response - 15 -
1.4.2 Development of Flow Control Method - 15 -
CHAPTER II. MULTIDEVICE SYSTEM EXPERIMENT - 16 -
2.1 Design of Multidevice System (Based on chemical reaction) - 16 -
2.2 Configuration of the 4-by-1 system - 17 -
2.3 Evaluation of Flow Control - 19 -
2.3.1 Signal Propagation and Attenuation - 21 -
2.3.2 Connection Sequence Validation - 22 -
2.3.3 Results - 23 -
2.4 Evaluation of Fluidic Resistance and Volume - 34 -
2.4.1 Fluidic Resistance and Response Time (Tubing only) - 35 -
2.4.2 Fluidic Resistance and Response Time (Connected to One Chip) - 35 -
2.4.3 Fluidic Resistance and Response Time (Connected to the 4-by-1 system) - 36 -
2.4.4 Volume and Stabilization - 37 -
2.4.5 Volume and Response Time - 38 -
2.4.6 Results - 39 -
CHAPTER III. DISCUSSION - 48 -
3.1 Evaluation of Damping Phenomena - 48 -
3.1.1 Fluidic Resistance Damping - 48 -
3.1.2 Volume Damping - 50 -
3.1.3 Other Factors of Damping - 52 -
3.1.4 Proposal for Damping Phenomena Model - 53 -
3.1.5 Proposal for flow control system - 57 -
CHAPTER IV. CONCLUSION - 58 -
References - 59 -

[1] D. Qin, Y. Xia, J. A. Rogers, R. J. Jackman, X.-M. Zhao, and G. M. Whitesides, "Microfabrication, Microstructures and Microsystems," in Microsystem Technology in Chemistry and Life Science, A. Manz and H. Becker Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 1-20.
[2] C. W. Hull, "Apparatus for production of three-dimensional objects by stereolithography," pp. 1-16, 1986.
[3] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: A novel concept for chemical sensing," Sensors and Actuators B: Chemical, vol. 1, no. 1, pp. 244-248, 1990/01/01/ 1990, doi: https://doi.org/10.1016/0925-4005(90)80209-I.
[4] A. Adamo et al., "On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system," Science, vol. 352, no. 6281, pp. 61-67, 2016/04/01 2016, doi: 10.1126/science.aaf1337.
[5] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," IEEE Transactions on Electron Devices, vol. 26, no. 12, pp. 1880-1886, 1979, doi: 10.1109/T-ED.1979.19791.
[6] A. T. Woolley and R. A. Mathies, "Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips," Proceedings of the National Academy of Sciences, vol. 91, no. 24, p. 11348, 1994, doi: 10.1073/pnas.91.24.11348.
[7] J. C. McDonald et al., "Fabrication of microfluidic systems in poly(dimethylsiloxane)," (in eng), Electrophoresis, vol. 21, no. 1, pp. 27-40, Jan 2000, doi: 10.1002/(sici)1522-2683(20000101)21:1<27::Aid-elps27>3.0.Co;2-c.
[8] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape," Proceedings of the National Academy of Sciences, vol. 105, no. 50, p. 19606, 2008, doi: 10.1073/pnas.0810903105.
[9] R. Osborne, "An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels," Phil. Trans. R. Soc., vol. 174, pp. 935–982, 1883 XXIX.
[10] R. G. Clift, J. R.; Weber, M. E., Bubbles Drops and Particles. New York: Academic Press, 1978.
[11] P. Tabelling, Introduction to Microfluidics. Oxford Press, 2005.
[12] R. Kwapiszewski, J. Szczudlowska, K. Kwapiszewska, A. Dybko, and Z. Brzózka, "Effect of downscaling on the linearity range of a calibration curve in spectrofluorimetry," Analytical and bioanalytical chemistry, vol. 406, 05/11 2014, doi: 10.1007/s00216-014-7844-2.
[13] J. Kobayashi et al., "A microfluidic device for conducting gas-liquid-solid hydrogenation reactions," (in eng), Science, vol. 304, no. 5675, pp. 1305-8, May 28 2004, doi: 10.1126/science.1096956.
[14] K. Mawatari, Y. Kazoe, A. Aota, T. Tsukahara, K. Sato, and T. Kitamori, "Microflow Systems for Chemical Synthesis and Analysis: Approaches to Full Integration of Chemical Process," Journal of Flow Chemistry, vol. 1, no. 1, pp. 3-12, 2011/01/01 2011, doi: 10.1556/jfchem.2011.00003.
[15] M. Tokeshi et al., "Continuous-Flow Chemical Processing on a Microchip by Combining Microunit Operations and a Multiphase Flow Network," Analytical Chemistry, vol. 74, no. 7, pp. 1565-1571, 2002/04/01 2002, doi: 10.1021/ac011111z.
[16] Y. Liu and X. Jiang, "Why microfluidics? Merits and trends in chemical synthesis," Lab on a Chip, 10.1039/C7LC00627F vol. 17, no. 23, pp. 3960-3978, 2017, doi: 10.1039/C7LC00627F.
[17] iknow資訊室, "中國大陸原料藥市場現狀分析," ed. Taiwan, 2004.
[18] B. Cushman-Roisin and B. T. Cremonini, "Chapter 12 - Industries," in Data, Statistics, and Useful Numbers for Environmental Sustainability, B. Cushman-Roisin and B. T. Cremonini Eds.: Elsevier, 2021, pp. 179-237.
[19] D. S. Kim, S. H. Lee, T. H. Kwon, and C. H. Ahn, "A serpentine laminating micromixer combining splitting/recombination and advection," Lab on a Chip, 10.1039/B418314B vol. 5, no. 7, pp. 739-747, 2005, doi: 10.1039/B418314B.
[20] J. Sun et al., "A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles," Nanoscale, 10.1039/C3NR01289A vol. 5, no. 12, pp. 5262-5265, 2013, doi: 10.1039/C3NR01289A.
[21] A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, "Chaotic mixer for microchannels," (in eng), Science, vol. 295, no. 5555, pp. 647-51, Jan 25 2002, doi: 10.1126/science.1066238.
[22] S. Kundu et al., "Continuous Flow Enzyme-Catalyzed Polymerization in a Microreactor," Journal of the American Chemical Society, vol. 133, no. 15, pp. 6006-6011, 2011/04/20 2011, doi: 10.1021/ja111346c.
[23] P. D. V. H. Dr. Timothy Noël, "Membrane Microreactors: Gas–Liquid Reactions Made Easy," ChemSusChem, 09 January 2013.
[24] J. G. K. Hemantkumar R. Sahoo, Klavs F. Jensen Prof., "Multistep Continuous-Flow Microchemical Synthesis Involving Multiple Reactions and Separations†," Angewandte Chemie International Edition, vol. 46, no. 30, pp. 5704-5708, 13 July 2007.
[25] S. Roesner and S. L. Buchwald, "Continuous-Flow Synthesis of Biaryls by Negishi Cross-Coupling of Fluoro- and Trifluoromethyl-Substituted (Hetero)arenes," (in eng), Angew Chem Int Ed Engl, vol. 55, no. 35, pp. 10463-7, Aug 22 2016, doi: 10.1002/anie.201605584.
[26] Wikipedia. "Chemical plant." https://en.wikipedia.org/wiki/Chemical_plant (accessed 07/23, 2022).
[27] E. Tracy Carole, Inc., U. S. D. o. Paul Scheihing, and U. S. D. o. Lou Sousa, "Energy Efficiency and Use in the Chemical Industry," American Council for an Energy-Efficient Economy, vol. Volume 1, pp. 267-275, 2001.
[28] J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab on a Chip, 10.1039/B601886F vol. 6, no. 6, pp. 735-739, 2006, doi: 10.1039/B601886F.
[29] P.-H. Huang et al., "A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures," Lab on a Chip, 10.1039/C4LC00806E vol. 14, no. 22, pp. 4319-4323, 2014, doi: 10.1039/C4LC00806E.
[30] A. Kalantarifard, E. Alizadeh Haghighi, and C. Elbuken, "Damping hydrodynamic fluctuations in microfluidic systems," Chemical Engineering Science, vol. 178, pp. 238-247, 2018/03/16/ 2018, doi: https://doi.org/10.1016/j.ces.2017.12.045.
[31] B. Yang and Q. Lin, "A Compliance-Based Microflow Stabilizer," Journal of Microelectromechanical Systems, vol. 18, no. 3, pp. 539-546, 2009, doi: 10.1109/JMEMS.2009.2021826.
[32] I. Doh and Y.-H. Cho, "Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves," Lab on a Chip, 10.1039/B821524C vol. 9, no. 14, pp. 2070-2075, 2009, doi: 10.1039/B821524C.
[33] S. Södergren, K. Svensson, and K. Hjort, "Microfluidic active pressure and flow stabiliser," Scientific Reports, vol. 11, no. 1, p. 22504, 2021/11/18 2021, doi: 10.1038/s41598-021-01865-4.
[34] Z. Jiao, J. Zhao, Z. Chao, Z. You, and J. Zhao, "An air-chamber-based microfluidic stabilizer for attenuating syringe-pump-induced fluctuations," Microfluidics and Nanofluidics, vol. 23, no. 2, p. 26, 2019/01/28 2019, doi: 10.1007/s10404-019-2193-2.
[35] J. Lee, F. Rahman, T. Laoui, and R. Karnik, "Bubble-induced damping in displacement-driven microfluidic flows," (in eng), Phys Rev E Stat Nonlin Soft Matter Phys, vol. 86, no. 2 Pt 2, p. 026301, Aug 2012, doi: 10.1103/PhysRevE.86.026301.
[36] M. Axin and P. Krus, "Design Rules for High Damping in Mobile Hydraulic Systems," 2013.
[37] D. P. Sean Cabaniss, Maxim Slivinsky, and Julianne Wagoner, "Reactors," in Northwestern University Chemical Process Design Open Textbook, 2016.
[38] P. J. Flory, "Kinetics of Polyesterification: A Study of the Effects of Molecular Weight and Viscosity on Reaction Rate," Journal of the American Chemical Society, vol. 61, no. 12, pp. 3334-3340, 1939/12/01 1939, doi: 10.1021/ja01267a030.
[39] AZO. "Properties of Materials." https://www.azom.com/ (accessed 07/16, 2022).
[40] M. Hébert, J. Huissoon, and C. L. Ren, "A quantitative study of the dynamic response of compliant microfluidic chips in a microfluidics context," Journal of Micromechanics and Microengineering, vol. 32, no. 8, p. 085004, 2022/06/23 2022, doi: 10.1088/1361-6439/ac7844.
[41] Wikipedia. "Microfluidics/Hydraulic resistance and capacity." https://en.wikibooks.org/wiki/Microfluidics/Hydraulic_resistance_and_capacity (accessed 07/17, 2022).
[42] E. FLOW. "Pump responsiveness: Why syringe pumps have low responsiveness in microfluidics." https://www.elveflow.com/microfluidic-reviews/general-microfluidics/responsiveness-in-microfluidics-syringe-pumps-and-microfluidic-research/ (accessed 2022).
[43] A. ELEMENTS. "Thermal Expansion Coefficient of Metals & Materials." https://www.americanelements.com/thermal-expansion-coe.html (accessed.
[44] Wikipedia. "Time constant." https://en.wikipedia.org/wiki/Time_constant (accessed 07/17, 2022).
[45] I. C. Christov, V. Cognet, T. C. Shidhore, and H. A. Stone, "Flow rate–pressure drop relation for deformable shallow microfluidic channels," Journal of Fluid Mechanics, vol. 841, pp. 267-286, 2018, doi: 10.1017/jfm.2018.30.
[46] H. Bruus, Theoretical Microfluidics. Oxford University Press, 2008.
[47] J. G. Speight, "2 - The properties of water," in Natural Water Remediation, J. G. Speight Ed.: Butterworth-Heinemann, 2020, pp. 53-89.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *