|
[1] D. Qin, Y. Xia, J. A. Rogers, R. J. Jackman, X.-M. Zhao, and G. M. Whitesides, "Microfabrication, Microstructures and Microsystems," in Microsystem Technology in Chemistry and Life Science, A. Manz and H. Becker Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 1-20. [2] C. W. Hull, "Apparatus for production of three-dimensional objects by stereolithography," pp. 1-16, 1986. [3] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: A novel concept for chemical sensing," Sensors and Actuators B: Chemical, vol. 1, no. 1, pp. 244-248, 1990/01/01/ 1990, doi: https://doi.org/10.1016/0925-4005(90)80209-I. [4] A. Adamo et al., "On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system," Science, vol. 352, no. 6281, pp. 61-67, 2016/04/01 2016, doi: 10.1126/science.aaf1337. [5] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," IEEE Transactions on Electron Devices, vol. 26, no. 12, pp. 1880-1886, 1979, doi: 10.1109/T-ED.1979.19791. [6] A. T. Woolley and R. A. Mathies, "Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips," Proceedings of the National Academy of Sciences, vol. 91, no. 24, p. 11348, 1994, doi: 10.1073/pnas.91.24.11348. [7] J. C. McDonald et al., "Fabrication of microfluidic systems in poly(dimethylsiloxane)," (in eng), Electrophoresis, vol. 21, no. 1, pp. 27-40, Jan 2000, doi: 10.1002/(sici)1522-2683(20000101)21:1<27::Aid-elps27>3.0.Co;2-c. [8] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape," Proceedings of the National Academy of Sciences, vol. 105, no. 50, p. 19606, 2008, doi: 10.1073/pnas.0810903105. [9] R. Osborne, "An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels," Phil. Trans. R. Soc., vol. 174, pp. 935–982, 1883 XXIX. [10] R. G. Clift, J. R.; Weber, M. E., Bubbles Drops and Particles. New York: Academic Press, 1978. [11] P. Tabelling, Introduction to Microfluidics. Oxford Press, 2005. [12] R. Kwapiszewski, J. Szczudlowska, K. Kwapiszewska, A. Dybko, and Z. Brzózka, "Effect of downscaling on the linearity range of a calibration curve in spectrofluorimetry," Analytical and bioanalytical chemistry, vol. 406, 05/11 2014, doi: 10.1007/s00216-014-7844-2. [13] J. Kobayashi et al., "A microfluidic device for conducting gas-liquid-solid hydrogenation reactions," (in eng), Science, vol. 304, no. 5675, pp. 1305-8, May 28 2004, doi: 10.1126/science.1096956. [14] K. Mawatari, Y. Kazoe, A. Aota, T. Tsukahara, K. Sato, and T. Kitamori, "Microflow Systems for Chemical Synthesis and Analysis: Approaches to Full Integration of Chemical Process," Journal of Flow Chemistry, vol. 1, no. 1, pp. 3-12, 2011/01/01 2011, doi: 10.1556/jfchem.2011.00003. [15] M. Tokeshi et al., "Continuous-Flow Chemical Processing on a Microchip by Combining Microunit Operations and a Multiphase Flow Network," Analytical Chemistry, vol. 74, no. 7, pp. 1565-1571, 2002/04/01 2002, doi: 10.1021/ac011111z. [16] Y. Liu and X. Jiang, "Why microfluidics? Merits and trends in chemical synthesis," Lab on a Chip, 10.1039/C7LC00627F vol. 17, no. 23, pp. 3960-3978, 2017, doi: 10.1039/C7LC00627F. [17] iknow資訊室, "中國大陸原料藥市場現狀分析," ed. Taiwan, 2004. [18] B. Cushman-Roisin and B. T. Cremonini, "Chapter 12 - Industries," in Data, Statistics, and Useful Numbers for Environmental Sustainability, B. Cushman-Roisin and B. T. Cremonini Eds.: Elsevier, 2021, pp. 179-237. [19] D. S. Kim, S. H. Lee, T. H. Kwon, and C. H. Ahn, "A serpentine laminating micromixer combining splitting/recombination and advection," Lab on a Chip, 10.1039/B418314B vol. 5, no. 7, pp. 739-747, 2005, doi: 10.1039/B418314B. [20] J. Sun et al., "A microfluidic origami chip for synthesis of functionalized polymeric nanoparticles," Nanoscale, 10.1039/C3NR01289A vol. 5, no. 12, pp. 5262-5265, 2013, doi: 10.1039/C3NR01289A. [21] A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, "Chaotic mixer for microchannels," (in eng), Science, vol. 295, no. 5555, pp. 647-51, Jan 25 2002, doi: 10.1126/science.1066238. [22] S. Kundu et al., "Continuous Flow Enzyme-Catalyzed Polymerization in a Microreactor," Journal of the American Chemical Society, vol. 133, no. 15, pp. 6006-6011, 2011/04/20 2011, doi: 10.1021/ja111346c. [23] P. D. V. H. Dr. Timothy Noël, "Membrane Microreactors: Gas–Liquid Reactions Made Easy," ChemSusChem, 09 January 2013. [24] J. G. K. Hemantkumar R. Sahoo, Klavs F. Jensen Prof., "Multistep Continuous-Flow Microchemical Synthesis Involving Multiple Reactions and Separations†," Angewandte Chemie International Edition, vol. 46, no. 30, pp. 5704-5708, 13 July 2007. [25] S. Roesner and S. L. Buchwald, "Continuous-Flow Synthesis of Biaryls by Negishi Cross-Coupling of Fluoro- and Trifluoromethyl-Substituted (Hetero)arenes," (in eng), Angew Chem Int Ed Engl, vol. 55, no. 35, pp. 10463-7, Aug 22 2016, doi: 10.1002/anie.201605584. [26] Wikipedia. "Chemical plant." https://en.wikipedia.org/wiki/Chemical_plant (accessed 07/23, 2022). [27] E. Tracy Carole, Inc., U. S. D. o. Paul Scheihing, and U. S. D. o. Lou Sousa, "Energy Efficiency and Use in the Chemical Industry," American Council for an Energy-Efficient Economy, vol. Volume 1, pp. 267-275, 2001. [28] J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, "An optically driven pump for microfluidics," Lab on a Chip, 10.1039/B601886F vol. 6, no. 6, pp. 735-739, 2006, doi: 10.1039/B601886F. [29] P.-H. Huang et al., "A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures," Lab on a Chip, 10.1039/C4LC00806E vol. 14, no. 22, pp. 4319-4323, 2014, doi: 10.1039/C4LC00806E. [30] A. Kalantarifard, E. Alizadeh Haghighi, and C. Elbuken, "Damping hydrodynamic fluctuations in microfluidic systems," Chemical Engineering Science, vol. 178, pp. 238-247, 2018/03/16/ 2018, doi: https://doi.org/10.1016/j.ces.2017.12.045. [31] B. Yang and Q. Lin, "A Compliance-Based Microflow Stabilizer," Journal of Microelectromechanical Systems, vol. 18, no. 3, pp. 539-546, 2009, doi: 10.1109/JMEMS.2009.2021826. [32] I. Doh and Y.-H. Cho, "Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves," Lab on a Chip, 10.1039/B821524C vol. 9, no. 14, pp. 2070-2075, 2009, doi: 10.1039/B821524C. [33] S. Södergren, K. Svensson, and K. Hjort, "Microfluidic active pressure and flow stabiliser," Scientific Reports, vol. 11, no. 1, p. 22504, 2021/11/18 2021, doi: 10.1038/s41598-021-01865-4. [34] Z. Jiao, J. Zhao, Z. Chao, Z. You, and J. Zhao, "An air-chamber-based microfluidic stabilizer for attenuating syringe-pump-induced fluctuations," Microfluidics and Nanofluidics, vol. 23, no. 2, p. 26, 2019/01/28 2019, doi: 10.1007/s10404-019-2193-2. [35] J. Lee, F. Rahman, T. Laoui, and R. Karnik, "Bubble-induced damping in displacement-driven microfluidic flows," (in eng), Phys Rev E Stat Nonlin Soft Matter Phys, vol. 86, no. 2 Pt 2, p. 026301, Aug 2012, doi: 10.1103/PhysRevE.86.026301. [36] M. Axin and P. Krus, "Design Rules for High Damping in Mobile Hydraulic Systems," 2013. [37] D. P. Sean Cabaniss, Maxim Slivinsky, and Julianne Wagoner, "Reactors," in Northwestern University Chemical Process Design Open Textbook, 2016. [38] P. J. Flory, "Kinetics of Polyesterification: A Study of the Effects of Molecular Weight and Viscosity on Reaction Rate," Journal of the American Chemical Society, vol. 61, no. 12, pp. 3334-3340, 1939/12/01 1939, doi: 10.1021/ja01267a030. [39] AZO. "Properties of Materials." https://www.azom.com/ (accessed 07/16, 2022). [40] M. Hébert, J. Huissoon, and C. L. Ren, "A quantitative study of the dynamic response of compliant microfluidic chips in a microfluidics context," Journal of Micromechanics and Microengineering, vol. 32, no. 8, p. 085004, 2022/06/23 2022, doi: 10.1088/1361-6439/ac7844. [41] Wikipedia. "Microfluidics/Hydraulic resistance and capacity." https://en.wikibooks.org/wiki/Microfluidics/Hydraulic_resistance_and_capacity (accessed 07/17, 2022). [42] E. FLOW. "Pump responsiveness: Why syringe pumps have low responsiveness in microfluidics." https://www.elveflow.com/microfluidic-reviews/general-microfluidics/responsiveness-in-microfluidics-syringe-pumps-and-microfluidic-research/ (accessed 2022). [43] A. ELEMENTS. "Thermal Expansion Coefficient of Metals & Materials." https://www.americanelements.com/thermal-expansion-coe.html (accessed. [44] Wikipedia. "Time constant." https://en.wikipedia.org/wiki/Time_constant (accessed 07/17, 2022). [45] I. C. Christov, V. Cognet, T. C. Shidhore, and H. A. Stone, "Flow rate–pressure drop relation for deformable shallow microfluidic channels," Journal of Fluid Mechanics, vol. 841, pp. 267-286, 2018, doi: 10.1017/jfm.2018.30. [46] H. Bruus, Theoretical Microfluidics. Oxford University Press, 2008. [47] J. G. Speight, "2 - The properties of water," in Natural Water Remediation, J. G. Speight Ed.: Butterworth-Heinemann, 2020, pp. 53-89.
|