|
[1] Davenport, M., Biliary atresia: clinical aspects. Semin Pediatr Surg, 2012. 21(3): p. 175-84. [2] Lee, K.J., et al., Epidemiology of Biliary Atresia in Korea. J Korean Med Sci, 2017. 32(4): p. 656-660. [3] Hopkins, P.C., N. Yazigi, and C.M. Nylund, Incidence of Biliary Atresia and Timing of Hepatoportoenterostomy in the United States. J Pediatr, 2017. 187: p. 253-257. [4] Feldman, A.G. and C.L. Mack, Biliary Atresia: Clinical Lessons Learned. J Pediatr Gastroenterol Nutr, 2015. 61(2): p. 167-75. [5] Sundaram, S.S., et al., Biliary atresia: Indications and timing of liver transplantation and optimization of pretransplant care. Liver Transpl, 2017. 23(1): p. 96-109. [6] Shneider, B.L., et al., Initial assessment of the infant with neonatal cholestasis-Is this biliary atresia? PLoS One, 2017. 12(5): p. e0176275. [7] Sun, S., et al., Analysis of clinical parameters that contribute to the misdiagnosis of biliary atresia. Journal of Pediatric Surgery, 2013. 48(7): p. 1490-1494. [8] Russo, P., et al., Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy. Clin Gastroenterol Hepatol, 2011. 9(4): p. 357-362 e2. [9] Kuo, W.C., et al., Investigation of Electrical Stability and Sensitivity of Electric Double Layer Gated Field-Effect Transistors (FETs) for miRNA Detection. Sensors (Basel), 2019. 19(7). [10] Wu, C.-R., et al., Demonstration of the enhancement of gate bias and ionic strength in electric-double-layer field-effect-transistor biosensors. Sensors and Actuators B: Chemical, 2021. 334: p. 129567. [11] Liao, L.W., et al., Rapid beta-human chorionic gonadotropin detection in urine with electric-double-layer gated field-effect transistor biosensors and a handheld device. Biomicrofluidics, 2021. 15(2): p. 024106. [12] Tsai, S.-Y., et al., Monitoring of Retinoic Acid Uptake into H9c2 Cells Using Electric-Double-Layer (EDL) Gated Field-Effect Transistors. ECS Journal of Solid State Science and Technology, 2020. 9(11): p. 115017. [13] Haber, B.A. and P. Russo, Biliary atresia. Gastroenterol Clin North Am, 2003. 32(3): p. 891-911. [14] McKiernan, P.J., A.J. Baker, and D.A. Kelly, The frequency and outcome of biliary atresia in the UK and Ireland. Lancet, 2000. 355(9197): p. 25-9. [15] Shivakumar, P., et al., Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia. J Clin Invest, 2004. 114(3): p. 322-9. [16] Lorent, K., et al., Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med, 2015. 7(286): p. 286ra67. [17] Garcia-Barcelo, M.M., et al., Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum Mol Genet, 2010. 19(14): p. 2917-25. [18] Muraji, T., et al., Maternal microchimerism in underlying pathogenesis of biliary atresia: quantification and phenotypes of maternal cells in the liver. Pediatrics, 2008. 121(3): p. 517-21. [19] Sokol, R.J., et al., Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop. Hepatology, 2007. 46(2): p. 566-81. [20] Bezerra, J.A., et al., Biliary Atresia: Clinical and Research Challenges for the Twenty-First Century. Hepatology, 2018. 68(3): p. 1163-1173. [21] Chardot, C., et al., Improving outcomes of biliary atresia: French national series 1986-2009. J Hepatol, 2013. 58(6): p. 1209-17. [22] Giannandrea, M. and W.C. Parks, Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech, 2014. 7(2): p. 193-203. [23] Nissinen, L. and V.M. Kahari, Matrix metalloproteinases in inflammation. Biochim Biophys Acta, 2014. 1840(8): p. 2571-80. [24] Klein, T. and R. Bischoff, Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011. 41(2): p. 271-90. [25] Wilson, C.L. and L.M. Matrisian, Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. Int J Biochem Cell Biol, 1996. 28(2): p. 123-36. [26] Irvine, K.M., et al., Multiplex Serum Protein Analysis Identifies Novel Biomarkers of Advanced Fibrosis in Patients with Chronic Liver Disease with the Potential to Improve Diagnostic Accuracy of Established Biomarkers. PLoS One, 2016. 11(11): p. e0167001. [27] Lertudomphonwanit, C., et al., Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia. Sci Transl Med, 2017. 9(417). [28] Bezerra, J.A., et al., Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet, 2002. 360(9346): p. 1653-9. [29] Wu, J.F., et al., Quantification of Serum Matrix Metallopeptide 7 Levels May Assist in the Diagnosis and Predict the Outcome for Patients with Biliary Atresia. Journal of Pediatrics, 2019. 208: p. 30-+. [30] Luo, X. and J.J. Davis, Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev, 2013. 42(13): p. 5944-62. [31] Zhou, W., et al., Gold Nanoparticles for In Vitro Diagnostics. Chem Rev, 2015. 115(19): p. 10575-636. [32] Juang, D.S., et al., Proton-ELISA: Electrochemical immunoassay on a dual-gated ISFET array. Biosens Bioelectron, 2018. 117: p. 175-182. [33] Nehra, A. and K. Pal Singh, Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens Bioelectron, 2015. 74: p. 731-43. [34] Mao, S., et al., Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem Soc Rev, 2017. 46(22): p. 6872-6904. [35] Liu, X., et al., Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sensors and Actuators B: Chemical, 2013. 176: p. 22-27. [36] Imaizumi, Y., et al., Identification of types of membrane injuries and cell death using whole cell-based proton-sensitive field-effect transistor systems. Analyst, 2017. 142(18): p. 3451-3458. [37] Gao, A., et al., Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett, 2012. 12(10): p. 5262-8. [38] Hideshima, S., et al., Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking. Sensors and Actuators B: Chemical, 2012. 161(1): p. 146-150. [39] Janissen, R., et al., InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. Nano Lett, 2017. 17(10): p. 5938-5949. [40] Fathi, F., M.R. Rashidi, and Y. Omidi, Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta, 2019. 192: p. 118-127. [41] Makowski, M.S. and A. Ivanisevic, Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. Small, 2011. 7(14): p. 1863-75. [42] Yi, Z. and J. Sayago, Transistors as an Emerging Platform for Portable Amplified Biodetection in Preventive Personalized Point‐of‐Care Testing. 2017. [43] H, O., Electrical double layer. In: Electrical Phenomena at Interfaces: Fundamentals Measurements, and Applications. Second Edition, Revised and Expanded, 2018. [44] Du, H., et al., Electric double-layer transistors: a review of recent progress. Journal of Materials Science, 2015. 50(17): p. 5641-5673. [45] Panneer Selvam, A. and S. Prasad, Nanosensor electrical immunoassay for quantitative detection of NT-pro brain natriuretic peptide. Future Cardiol, 2013. 9(1): p. 137-47. [46] Huttunen, T., et al., A full-wave Helmholtz model for continuous-wave ultrasound transmission. IEEE Trans Ultrason Ferroelectr Freq Control, 2005. 52(3): p. 397-409. [47] Shapovalov, V.L. and G. Brezesinski, Breakdown of the Gouy-Chapman model for highly charged Langmuir monolayers: counterion size effect. J Phys Chem B, 2006. 110(20): p. 10032-40. [48] Oldham, K.B., A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. Journal of Electroanalytical Chemistry, 2008. 613(2): p. 131-138. [49] Stojek, Z., The Electrical Double Layer and Its Structure. 2010: p. 3-9. [50] Fu, L.M., et al., Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review. Electrophoresis, 2018. 39(2): p. 289-310. [51] Lei, Y.M., et al., Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens Bioelectron, 2017. 91: p. 1-7. [52] Onsager, L. and N.N.T. Samaras, The Surface Tension of Debye‐Hückel Electrolytes. The Journal of Chemical Physics, 1934. 2(8): p. 528-536. [53] Munje, R.D., et al., Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Sci Rep, 2015. 5: p. 14586. [54] Sarangadharan, I., et al., High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors. Biosens Bioelectron, 2018. 100: p. 282-289. [55] Hook, D.A., et al., Evaluation of Oxygen Plasma and UV Ozone Methods for Cleaning of Occluded Areas in MEMS Devices. Journal of Microelectromechanical Systems, 2010. 19(6): p. 1292-1298. [56] K.S. Kim, et al., Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. Journal of Membrane Science, April 2002. 199(1): p. 135–145. [57] Cruz, L.J., et al., The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials, 2011. 32(28): p. 6791-803. [58] Welch, N.G., et al., Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases, 2017. 12(2): p. 02D301. [59] Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-10. [60] Cole, K.H. and A. Luptak, High-throughput methods in aptamer discovery and analysis. Methods Enzymol, 2019. 621: p. 329-346. [61] Hong, K.L. and L.J. Sooter, Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. Biomed Res Int, 2015. 2015: p. 419318. [62] Kwon, J., et al., Aptamer-Based Field-Effect Transistor for Detection of Avian Influenza Virus in Chicken Serum. Anal Chem, 2020. 92(7): p. 5524-5531. [63] Ali, M.H., M.E. Elsherbiny, and M. Emara, Updates on Aptamer Research. Int J Mol Sci, 2019. 20(10). [64] Huang, J., et al., Advances in Aptamer-Based Biomarker Discovery. Front Cell Dev Biol, 2021. 9: p. 659760. [65] Shangguan, D., et al., Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res, 2008. 7(5): p. 2133-9. [66] Novo, A.C., et al., Longitudinal study of Cystatin C in healthy term newborns. Clinics (Sao Paulo), 2011. 66(2): p. 217-20. [67] Vejchapipat, P., et al., Serum transforming growth factor-beta1 and epidermal growth factor in biliary atresia. Eur J Pediatr Surg, 2008. 18(6): p. 415-8.
|