帳號:guest(52.14.2.251)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳嘉哲
作者(外文):Wu, Chia-Che
論文名稱(中文):新生兒膽道閉鎖的新穎診斷方法: 使用電雙層場效電晶體生物感測器檢測基質金屬蛋白酶7
論文名稱(外文):An Emerging Diagnostics for Biliary Atresia in Newborns: MMP7 Detection using Electric-Double-Layer (EDL)-gated FET Biosensors
指導教授(中文):王玉麟
指導教授(外文):Wang, Yu-Lin
口試委員(中文):董國忠
陳榮治
李博仁
林宗宏
口試委員(外文):Dong, Guo-Chung
Chen, Jung-Chih
Li, Bor-Ran
Lin, Zong-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:109035519
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:85
中文關鍵詞:電雙層場效電晶體膽道閉鎖MMP7生物感測器
外文關鍵詞:EDLFETBiliary atresia (BA)MMP7Biosensors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:99
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
膽道閉鎖屬於新生兒的疾病的其中一種,為先天膽道系統發育異常所致,如果沒有得到即時的治療,最壞的情況會引發肝衰竭進而導致死亡。雖然這是不常見的疾病,但由於其難以於早期診斷出來,父母仍無法忽視此疾病恐造成的嚴重性。目前臨床上是依賴血液生化檢查或是一些手術方式來做診斷,但準確性的不足還是無法及時給予最為正確的治療,因此一個可以快速鑑別的方式變得極為重要。目前研究對於許多特殊疾病均已找到相應的生物性指標。近幾年中,基質金屬蛋白酶7 (MMP7) 也被廣泛討論並將之視為是一個新穎的生物性指標,其價值在於患有膽道閉鎖症狀的新生兒中 MMP7 會明顯提升。在此研究中,我們將設計並開發一個平台來檢測 MMP7,此機制的原理為應用電雙層 (EDL) 場效電晶體 (FET),而檢測的靈敏度來自於當蛋白與探針結合時產生的閘極電壓變化。透過開發此平台,膽道閉鎖於早期診斷變為可能,而此平台的優點不僅是可以偵測 MMP7 蛋白,對於一般人也是方便使用。在未來應用中,期望此生物感測器可以在醫院操作以促進臨床研究並提升新生兒福祉。
Biliary Atresia (BA) is a severe disease would occur in newborns. If newborns do not get timely treatment, the worst consequence finally results in liver failure (needs liver transplantation) and even death. Even if this disease is rare, parents still consider this disease serious because BA is hard to diagnose early. The clinical method relies on blood testing or some invasive surgical way, but the accuracy is too low to treat correctly. It is necessary to detect BA quickly for newborns to address these challenges. As the biomarker for a specific disease is researched widely, some studies also reported that Matrix metalloproteinase-7 (MMP7) protein that would increase under the BA disease is valuable to be a biomarker. MMP7 has been regarded as a novel indicator for BA in recent years. In this study, a detection platform was developed to detect the MMP7 protein. The mechanism is based on an electric-double-layer (EDL) field-effect-transistor (FET), and the sensitivity of the detection is from probe bind with protein and caused different gate voltage. With this EDL-gated FET biosensor, the early diagnosis for BA is possible. The advantage of this platform not only can use for MMP7 detection and is easy to operate in general. This biosensor will be deployed in hospitals to benefit clinical studies and improve newborn welfares in future applications.
Contents
摘要 i
Abstract ii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objective 2
Chapter 2 Literature Review 4
2.1 Biliary Atresia (BA) 4
2.2 Diagnosis methods for BA 6
2.3 MMP7 as the biomarker 7
2.4 Field-effect transistor (FET) based biosensor 8
2.5 Electrical double layer (EDL) model 10
2.6 Charge screening effect 12
Chapter 3 Experimental Design 14
3.1 Fabrication of sensor chip 14
3.2 Surface clean 16
3.3 Surface functionalization 16
3.3.1 Traut’s reagent functionalization 16
3.3.2 PEG linker functionalization 18
3.3.3 TCEP functionalization 19
3.4 Electrical signal measurement 22
3.6 Detection antibody 24
3.7 Dot blot 24
Chapter 4 Results and Discussion 26
4.1 Characteristic curve of MOSFET LND 150 26
4.2 Surface functionalization 27
4.3 The operation of FET sensor 29
4.4 MMP7 protein detection using the EDL-gated FET biosensor with antibody functionalization 30
4.5 The function of antibody when reacting with Traut’s reagent 32
4.6 Testing MMP7 protein with new antibody (only in PBS) 40
4.7 The type of FET shift from LND150 to VN10LP 42
4.8 Antibody react with different fold of Traut’s reagent 43
4.9 Immobilizing antibody on sensor with PEG linker 51
4.10 The concept of competitive ELISA 53
4.11 Optimize the condition of antibody to detect protein immobilized on sensor 54
4.12 Optimization of the immobilized MMP7 protein on sensors 57
4.13 The competitive ELISA principle applies to this sensor 59
4.14 The immobilization probe changing to Aptamer 61
4.15 The sensor surface changed to evaporated gold deposition 62
4.16 Optimize the concentration of aptamer immobilization 64
4.17 MMP7 protein detection limit 66
4.18 The range of MMP7 protein detection 67
4.19 Investigation of the sensor selectivity 68
4.20 Salt concentration will affect the ability of the aptamer to capture protein 70
Chapter 5 Summary and Future Work 75
Chapter 6 Reference 81
[1] Davenport, M., Biliary atresia: clinical aspects. Semin Pediatr Surg, 2012. 21(3): p. 175-84.
[2] Lee, K.J., et al., Epidemiology of Biliary Atresia in Korea. J Korean Med Sci, 2017. 32(4): p. 656-660.
[3] Hopkins, P.C., N. Yazigi, and C.M. Nylund, Incidence of Biliary Atresia and Timing of Hepatoportoenterostomy in the United States. J Pediatr, 2017. 187: p. 253-257.
[4] Feldman, A.G. and C.L. Mack, Biliary Atresia: Clinical Lessons Learned. J Pediatr Gastroenterol Nutr, 2015. 61(2): p. 167-75.
[5] Sundaram, S.S., et al., Biliary atresia: Indications and timing of liver transplantation and optimization of pretransplant care. Liver Transpl, 2017. 23(1): p. 96-109.
[6] Shneider, B.L., et al., Initial assessment of the infant with neonatal cholestasis-Is this biliary atresia? PLoS One, 2017. 12(5): p. e0176275.
[7] Sun, S., et al., Analysis of clinical parameters that contribute to the misdiagnosis of biliary atresia. Journal of Pediatric Surgery, 2013. 48(7): p. 1490-1494.
[8] Russo, P., et al., Design and validation of the biliary atresia research consortium histologic assessment system for cholestasis in infancy. Clin Gastroenterol Hepatol, 2011. 9(4): p. 357-362 e2.
[9] Kuo, W.C., et al., Investigation of Electrical Stability and Sensitivity of Electric Double Layer Gated Field-Effect Transistors (FETs) for miRNA Detection. Sensors (Basel), 2019. 19(7).
[10] Wu, C.-R., et al., Demonstration of the enhancement of gate bias and ionic strength in electric-double-layer field-effect-transistor biosensors. Sensors and Actuators B: Chemical, 2021. 334: p. 129567.
[11] Liao, L.W., et al., Rapid beta-human chorionic gonadotropin detection in urine with electric-double-layer gated field-effect transistor biosensors and a handheld device. Biomicrofluidics, 2021. 15(2): p. 024106.
[12] Tsai, S.-Y., et al., Monitoring of Retinoic Acid Uptake into H9c2 Cells Using Electric-Double-Layer (EDL) Gated Field-Effect Transistors. ECS Journal of Solid State Science and Technology, 2020. 9(11): p. 115017.
[13] Haber, B.A. and P. Russo, Biliary atresia. Gastroenterol Clin North Am, 2003. 32(3): p. 891-911.
[14] McKiernan, P.J., A.J. Baker, and D.A. Kelly, The frequency and outcome of biliary atresia in the UK and Ireland. Lancet, 2000. 355(9197): p. 25-9.
[15] Shivakumar, P., et al., Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia. J Clin Invest, 2004. 114(3): p. 322-9.
[16] Lorent, K., et al., Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med, 2015. 7(286): p. 286ra67.
[17] Garcia-Barcelo, M.M., et al., Genome-wide association study identifies a susceptibility locus for biliary atresia on 10q24.2. Hum Mol Genet, 2010. 19(14): p. 2917-25.
[18] Muraji, T., et al., Maternal microchimerism in underlying pathogenesis of biliary atresia: quantification and phenotypes of maternal cells in the liver. Pediatrics, 2008. 121(3): p. 517-21.
[19] Sokol, R.J., et al., Screening and outcomes in biliary atresia: summary of a National Institutes of Health workshop. Hepatology, 2007. 46(2): p. 566-81.
[20] Bezerra, J.A., et al., Biliary Atresia: Clinical and Research Challenges for the Twenty-First Century. Hepatology, 2018. 68(3): p. 1163-1173.
[21] Chardot, C., et al., Improving outcomes of biliary atresia: French national series 1986-2009. J Hepatol, 2013. 58(6): p. 1209-17.
[22] Giannandrea, M. and W.C. Parks, Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech, 2014. 7(2): p. 193-203.
[23] Nissinen, L. and V.M. Kahari, Matrix metalloproteinases in inflammation. Biochim Biophys Acta, 2014. 1840(8): p. 2571-80.
[24] Klein, T. and R. Bischoff, Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011. 41(2): p. 271-90.
[25] Wilson, C.L. and L.M. Matrisian, Matrilysin: an epithelial matrix metalloproteinase with potentially novel functions. Int J Biochem Cell Biol, 1996. 28(2): p. 123-36.
[26] Irvine, K.M., et al., Multiplex Serum Protein Analysis Identifies Novel Biomarkers of Advanced Fibrosis in Patients with Chronic Liver Disease with the Potential to Improve Diagnostic Accuracy of Established Biomarkers. PLoS One, 2016. 11(11): p. e0167001.
[27] Lertudomphonwanit, C., et al., Large-scale proteomics identifies MMP-7 as a sentinel of epithelial injury and of biliary atresia. Sci Transl Med, 2017. 9(417).
[28] Bezerra, J.A., et al., Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet, 2002. 360(9346): p. 1653-9.
[29] Wu, J.F., et al., Quantification of Serum Matrix Metallopeptide 7 Levels May Assist in the Diagnosis and Predict the Outcome for Patients with Biliary Atresia. Journal of Pediatrics, 2019. 208: p. 30-+.
[30] Luo, X. and J.J. Davis, Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev, 2013. 42(13): p. 5944-62.
[31] Zhou, W., et al., Gold Nanoparticles for In Vitro Diagnostics. Chem Rev, 2015. 115(19): p. 10575-636.
[32] Juang, D.S., et al., Proton-ELISA: Electrochemical immunoassay on a dual-gated ISFET array. Biosens Bioelectron, 2018. 117: p. 175-182.
[33] Nehra, A. and K. Pal Singh, Current trends in nanomaterial embedded field effect transistor-based biosensor. Biosens Bioelectron, 2015. 74: p. 731-43.
[34] Mao, S., et al., Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem Soc Rev, 2017. 46(22): p. 6872-6904.
[35] Liu, X., et al., Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid. Sensors and Actuators B: Chemical, 2013. 176: p. 22-27.
[36] Imaizumi, Y., et al., Identification of types of membrane injuries and cell death using whole cell-based proton-sensitive field-effect transistor systems. Analyst, 2017. 142(18): p. 3451-3458.
[37] Gao, A., et al., Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett, 2012. 12(10): p. 5262-8.
[38] Hideshima, S., et al., Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking. Sensors and Actuators B: Chemical, 2012. 161(1): p. 146-150.
[39] Janissen, R., et al., InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. Nano Lett, 2017. 17(10): p. 5938-5949.
[40] Fathi, F., M.R. Rashidi, and Y. Omidi, Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta, 2019. 192: p. 118-127.
[41] Makowski, M.S. and A. Ivanisevic, Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. Small, 2011. 7(14): p. 1863-75.
[42] Yi, Z. and J. Sayago, Transistors as an Emerging Platform for Portable Amplified Biodetection in Preventive Personalized Point‐of‐Care Testing. 2017.
[43] H, O., Electrical double layer. In: Electrical Phenomena at Interfaces: Fundamentals Measurements, and Applications. Second Edition, Revised and Expanded, 2018.
[44] Du, H., et al., Electric double-layer transistors: a review of recent progress. Journal of Materials Science, 2015. 50(17): p. 5641-5673.
[45] Panneer Selvam, A. and S. Prasad, Nanosensor electrical immunoassay for quantitative detection of NT-pro brain natriuretic peptide. Future Cardiol, 2013. 9(1): p. 137-47.
[46] Huttunen, T., et al., A full-wave Helmholtz model for continuous-wave ultrasound transmission. IEEE Trans Ultrason Ferroelectr Freq Control, 2005. 52(3): p. 397-409.
[47] Shapovalov, V.L. and G. Brezesinski, Breakdown of the Gouy-Chapman model for highly charged Langmuir monolayers: counterion size effect. J Phys Chem B, 2006. 110(20): p. 10032-40.
[48] Oldham, K.B., A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface. Journal of Electroanalytical Chemistry, 2008. 613(2): p. 131-138.
[49] Stojek, Z., The Electrical Double Layer and Its Structure. 2010: p. 3-9.
[50] Fu, L.M., et al., Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review. Electrophoresis, 2018. 39(2): p. 289-310.
[51] Lei, Y.M., et al., Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor. Biosens Bioelectron, 2017. 91: p. 1-7.
[52] Onsager, L. and N.N.T. Samaras, The Surface Tension of Debye‐Hückel Electrolytes. The Journal of Chemical Physics, 1934. 2(8): p. 528-536.
[53] Munje, R.D., et al., Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Sci Rep, 2015. 5: p. 14586.
[54] Sarangadharan, I., et al., High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors. Biosens Bioelectron, 2018. 100: p. 282-289.
[55] Hook, D.A., et al., Evaluation of Oxygen Plasma and UV Ozone Methods for Cleaning of Occluded Areas in MEMS Devices. Journal of Microelectromechanical Systems, 2010. 19(6): p. 1292-1298.
[56] K.S. Kim, et al., Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment. Journal of Membrane Science, April 2002. 199(1): p. 135–145.
[57] Cruz, L.J., et al., The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials, 2011. 32(28): p. 6791-803.
[58] Welch, N.G., et al., Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases, 2017. 12(2): p. 02D301.
[59] Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-10.
[60] Cole, K.H. and A. Luptak, High-throughput methods in aptamer discovery and analysis. Methods Enzymol, 2019. 621: p. 329-346.
[61] Hong, K.L. and L.J. Sooter, Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications. Biomed Res Int, 2015. 2015: p. 419318.
[62] Kwon, J., et al., Aptamer-Based Field-Effect Transistor for Detection of Avian Influenza Virus in Chicken Serum. Anal Chem, 2020. 92(7): p. 5524-5531.
[63] Ali, M.H., M.E. Elsherbiny, and M. Emara, Updates on Aptamer Research. Int J Mol Sci, 2019. 20(10).
[64] Huang, J., et al., Advances in Aptamer-Based Biomarker Discovery. Front Cell Dev Biol, 2021. 9: p. 659760.
[65] Shangguan, D., et al., Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res, 2008. 7(5): p. 2133-9.
[66] Novo, A.C., et al., Longitudinal study of Cystatin C in healthy term newborns. Clinics (Sao Paulo), 2011. 66(2): p. 217-20.
[67] Vejchapipat, P., et al., Serum transforming growth factor-beta1 and epidermal growth factor in biliary atresia. Eur J Pediatr Surg, 2008. 18(6): p. 415-8.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *