帳號:guest(18.191.116.19)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭容銓
作者(外文):Kuo, Jung-Chuan
論文名稱(中文):場效電晶體重金屬感測器的可靠度分析
論文名稱(外文):Reliability Assessment of Heavy Metal Ion Field-Effect-Transistor (FET)-Based Sensors
指導教授(中文):王玉麟
指導教授(外文):Wang, Yu-Lin
口試委員(中文):董國忠
陳榮治
李博仁
林宗宏
口試委員(外文):Dong, Guo-Chung
Chen, Jung-Chih
Li, Bor-Ran
Lin, Zong-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:109035514
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:74
中文關鍵詞:場效電晶體重金屬離子選擇感測器可靠度分析
外文關鍵詞:FETheavy metalion selective sensorsreliability assessment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著工業的發展,重金屬汙染所帶來的問題也越來越嚴重,人們在日常生活中暴露於重金屬汙染的風險也逐漸增加。如果人們長時間接觸含有重金屬汙染的水、空氣和食物,則容易造成體內中樞神經系統損壞以及臟器功能的損傷,因此隨時監測生活中的重金屬含量成了重要的課題。傳統的重金屬檢測方法包括:電感耦合電漿體質譜法 (ICP-MS)、原子吸收光譜法 (AAS),這些方法雖然可以用來檢測重金屬,但是它們成本高昂、耗時且相當繁複,因此無法達成及時精準檢測的需求。延伸式閘極離子選擇場效電晶體具備有高靈敏度、偵測範圍廣、低偵測極限、成本低廉以及即時檢測的特性,對於有立即檢測重金屬濃度需求的人來說,是一套方便且有效的系統。為了使感測器具備長壽命週期、廣工作溫度區間以及常溫下能仍正常保存的特性,本研究中專注於感測器的可靠度改善,進行了一系列的測試:感測器最適合保存溫度、感測器12個月壽命週期的規格分析以及在不同工作溫度下的規格分析,其中規格分析包含感測器的靈敏度、雜訊比以及鑑別度。
關鍵詞: 場效電晶體、重金屬、離子選擇感測器、可靠度分析
With the progress of industry, the heavy metal pollution leads to many problems and the risk of the heavy metal is increasing in our daily lives. If people contact to the water, air or food containing heavy metal, it is prone to damage the nervous system and organ in the body. Therefore, monitoring the content of heavy metal instantly has become an important issue. Traditional methods of detecting heavy metal include inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectroscopy (AAS). Although these methods can be used to detect heavy metals, they are costly, time-consuming and quite complicated. So, they can’t meet the requirements of timely and accurate detection. The extended gate ion selective field effect transistor has the characteristics of high sensitivity, wide detection range, low detection limit, low cost and real-time detection. It is a convenient and effective system for people who need to detect the concentration of heavy metals immediately. To make the sensors have long lifetime, wide operating temperature range, and room temperature preservation, we focus on improving the reliability of the sensors and conduct a series of experiments regarding to suitable storage temperature of sensors, different lifetimes of sensors and the suitable working temperature for the sensors. The tests include the analysis of sensor's sensitivity, signal-to-noise ratio and resolution.
keywords: FET, heavy metal, ion selective sensors, reliability assessment
摘要-------------------------------------------------------------i
Abstract---------------------------------------------------------ii
Chapter 1 Introduction-------------------------------------------1
Chapter 2 Literature Review--------------------------------------4
2.1 Threaten of heavy metals-------------------------------------4
2.2 Traditional methods for detecting heavy metal ions-----------6
2.3 Ion Selective Electrode (ISE)--------------------------------7
2.4 Ion Sensitive FETs (ISFETs)----------------------------------11
Chapter 3 Preparation and Design of Experiments------------------16
3.1 Sensor array chip fabrication and immobilization of Ion Selective Membrane---------------------------------------------------------16
3.2 Heavy metal test solution preparation------------------------18
3.3 Measurement method-------------------------------------------20
Chapter 4 Results and Discussions--------------------------------22
4.1 Investigation of sensor mechanism----------------------------22
4.2 Characteristic curve of LND150 MOSFET and VN10LP MOSFET------23
4.3 Sensitivity of heavy metal ion sensors-----------------------27
4.4 Storage temperature for heavy metal ion sensors--------------31
4.5 Selectivity test of heavy metal ion sensors------------------39
4.6 Heavy metal ion sensors with different lifetimes-------------45
4.7 Cadmium ion sensors tested at different temperatures---------51
4.8 Chips with package and leakage current measurement of ISM chip---
-----------------------------------------------------------------54
Chapter 5 Conclusion---------------------------------------------66
Chapter 6 Future Work--------------------------------------------67
Reference--------------------------------------------------------69
[1] Kocadal, K., et al., "Cellular pathologies and genotoxic effects arising secondary to heavy metal exposure: A review." Human & Experimental Toxicology, 2020. 39(1): p. 3-13.
[2] Bjorklund, G., et al., "Concerns about environmental mercury toxicity: do we forget something else?" Environmental Research, 2017. 152: p. 514-516.
[3] Organization, W.H. "The public health impact of chemicals: knowns and unknowns." . 2016.
[4] Leal, P.P., et al., "Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages." Scientific Reports, 2018. 8.
[5] Mubarak, H., et al., "Antimony (Sb) - pollution and removal techniques - critical assessment of technologies." Toxicological and Environmental Chemistry, 2015. 97(10): p. 1296-1318.
[6] Irzon, R., et al., "Heavy Metals Content and Pollution in Tin Tailings from Singkep Island, Riau, Indonesia." Sains Malaysiana, 2018. 47(11): p. 2609-2616.
[7] Buruiana, D.L., et al., "Toxicity of Heavy Metals on the Environment and Human Health." Ecology, Economics, Education and Legislation, Vol Ii, 2015: p. 565-571.
[8] Fujimoto, K. and A. Chino, "Determination of trace amounts of mercury, lead and cadmium in steels by ICP-MS after ion exchange chromatographic separation." Bunseki Kagaku, 2006. 55(4): p. 245-249.
[9] Pouzar, M., T. Cernohorsky, and A. Krejcova, "Determination of metals in drinking, surface and waste water by XRF spectrometry after preconcentration of the sample on the ion-exchange filter." Chemia Analityczna, 2003. 48(1): p. 55-64.
[10] Capelo, J.L., et al., "Mercury determination by FI-CV-AAS after the degradation of organomercurials with the aid of an ultrasonic field: The important role of the hypochlorite ion." Talanta, 2006. 68(3): p. 813-818.
[11] Jusufi, K., et al., "Determination of Heavy Metals by Icp-Aes in the Agricultural Soils Surrounding Kosovo's Power Plants." Fresenius Environmental Bulletin, 2016. 25(5): p. 1313-1321.
[12] Helaluddin, A.B.M., et al., "Main Analytical Techniques Used for Elemental Analysis in Various Matrices." Tropical Journal of Pharmaceutical Research, 2016. 15(2): p. 427-434.
[13] Kadachi, A.N. and M.A. Al-Eshaikh, "Limits of detection in XRF spectroscopy." X-Ray Spectrometry, 2012. 41(5): p. 350-354.
[14] Wang, H., et al., "Sample pre-treatment techniques for use with ICP-MS hyphenated techniques for elemental speciation in biological samples." Journal of Analytical Atomic Spectrometry, 2017. 32(1): p. 58-77.
[15] Megahed, A.A., et al., "Evaluation of 2 portable ion-selective electrode meters for determining whole blood, plasma, urine, milk, and abomasal fluid potassium concentrations in dairy cattle." Journal of Dairy Science, 2016. 99(9): p. 7330-7343.
[16] Yousuf, P.Y., et al., "Potassium and Calcium Application Ameliorates Growth and Oxidative Homeostasis in Salt-Stressed Indian Mustard (Brassica Juncea) Plants." Pakistan Journal of Botany, 2015. 47(5): p. 1629-1639.
[17] Al Alawi, A.M., S.W. Majoni, and H. Falhammar, "Magnesium and Human Health: Perspectives and Research Directions." International Journal of Endocrinology, 2018. 2018.
[18] Wu, J., et al., "The toxicity emissions and spatialized health risks of heavy metals in PM2.5 from biomass fuels burning." Atmospheric Environment, 2022. 284.
[19] Fu, Z.S. and S.H. Xi, "The effects of heavy metals on human metabolism." Toxicology Mechanisms and Methods, 2020. 30(3): p. 167-176.
[20] Canfield, R.L., et al., "Intellectual impairment in children with blood lead concentrations below 10 mu g per deciliter." New England Journal of Medicine, 2003. 348(16): p. 1517-1526.
[21] Canfield, R.L., et al., "Low-level lead exposure, executive functioning, and learning in early childhood." Child Neuropsychology, 2003. 9(1): p. 35-53.
[22] Navas-Acien, A., et al., "Lead exposure and cardiovascular disease - A systematic review." Environmental Health Perspectives, 2007. 115(3): p. 472-482.
[23] Kulshrestha, M.K., "Lead poisoning diagnosed by abdominal X rays." Journal of Toxicology-Clinical Toxicology, 1996. 34(1): p. 107-108.
[24] Rosenberg, C.E., et al., "Red blood cell osmotic fragility in Bufo arenarum exposed to lead." Archives of Physiology and Biochemistry, 1998. 106(1): p. 19-24.
[25] Siegler, R.W., D.W. Nierenberg, and W.F. Hickey, "Fatal poisoning from liquid dimethylmercury: A neuropathologic study." Human Pathology, 1999. 30(6): p. 720-723.
[26] Normile, D., "MERCURY POLLUTION In Minamata, Mercury Still Divides." Science, 2013. 341(6153): p. 1446-1447.
[27] Wang, B., et al., "Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas," China. Environment International, 2021. 154.
[28] Li, Y.X., et al., "Cadmium Exposure in Young Adulthood Is Associated with Risk of Nonalcoholic Fatty Liver Disease in Midlife." Digestive Diseases and Sciences, 2021.
[29] Qing, Y., et al., "Cancer risk and disease burden of dietary cadmium exposure changes in Shanghai residents from 1988 to 2018." Science of the Total Environment, 2020. 734.
[30] Nishijo, M., et al., "Lifetime Cadmium Exposure and Mortality for Renal Diseases in Residents of the Cadmium-Polluted Kakehashi River Basin in Japan." Toxics, 2020. 8(4).
[31] Cotter, L.H., "Treatment of Cadmium Poisoning with Edathamil Calcium Disodium." Jama-Journal of the American Medical Association, 1958. 166(7): p. 735-736.
[32] Tseng, C.H., et al., "Blackfoot disease in Taiwan: Its link with inorganic arsenic exposure from drinking water." Ambio, 2007. 36(1): p. 82-84.
[33] "Fda Sets Limit for Arsenic in Apple Juice." Chemical & Engineering News, 2013. 91(29): p. 21-21.
[34] Erickson, B., "FOOD SCIENCE FDA to reassess arsenic in rice." Chemical & Engineering News, 2018. 96(17): p. 19-19.
[35] "Bal (British Anti-Lewisite) in the Treatment of Arsenic and Mercury Poisoning." Jama-Journal of the American Medical Association, 1946. 131(10): p. 824-824.
[36] "Bal in the Treatment of Arsenic and Mercury Poisoning." Annals of Internal Medicine, 1946. 25(6): p. 986-989.
[37] Woody, N.C. and J.T. Kometani, "Bal in the Treatment of Arsenic Ingestion of Children." Pediatrics, 1948. 1(3): p. 372-378.
[38] "Bal Saves Lives - Health Officer Urges Pharmacists to Stock Specific Antidote for Arsenic, Mercury and Other Heavy Metal Poisonings." Journal of the American Pharmaceutical Association-Practical Pharmacy Edition, 1951. 12(2): p. 103-106.
[39] Hartzell, M.B., "Arsenic in diseases of the skin, with observations on sodium cacodylate and anoxyl." Journal of the American Medical Association, 1908. 51: p. 1482-1485.
[40] Cowlishaw, J.L., et al., "Liver-Disease Associated with Chronic Arsenic Administration." Australian and New Zealand Journal of Medicine, 1977. 7(1): p. 107-107.
[41] Murata, K., et al., "Quadruple Cancer Including Bowens-Disease after Arsenic Injections 40 Years Earlier - Report of a Case." Surgery Today-the Japanese Journal of Surgery, 1994. 24(12): p. 1115-1118.
[42] Alghanmi, R.M., "ICP-OES Determination of Trace Metal Ions after Preconcentration Using Silica Gel Modified with 1,2-Dihydroxyanthraquinone." E-Journal of Chemistry, 2012. 9(2): p. 1007-1016.
[43] Grosser, Z.A., "Driving down detection limits." Photonics Spectra, 2004. 38(2): p. 116-118.
[44] Saad, A.S., et al., "ISE-potentiometric sensor for the determination of zolmitriptan: applications in plasma, pharmaceutical formulation and in vitro release profile." New Journal of Chemistry, 2018. 42(18): p. 15263-15269.
[45] Lindner, E. and B.D. Pendley, "A tutorial on the application of ion-selective electrode potentiometry: An analytical method with unique qualities, unexplored opportunities and potential pitfalls; Tutorial." Analytica Chimica Acta, 2013. 762: p. 1-13.
[46] Vanamo, U. and J. Bobacka, "Electrochemical control of the standard potential of solid-contact ion-selective electrodes having a conducting polymer as ion-to-electron transducer." Electrochimica Acta, 2014. 122: p. 316-321.
[47] Itterheimova, P., et al., "Perchlorate Solid-Contact Ion-Selective Electrode Based on Dodecabenzylbambus[6]uril." Chemosensors, 2022. 10(3).
[48] Bakker, E. and E. Pretsch, "The new wave of ion-selective electrodes." Analytical Chemistry, 2002. 74(15): p. 420a-426a.
[49] Criscuolo, F., et al., "All-Solid-State Ion-Selective Electrodes: A Tutorial for Correct Practice." Ieee Sensors Journal, 2021. 21(20): p. 22143-22154.
[50] Bakker, E., P. Buhlmann, and E. Pretsch, "Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics." Chemical Reviews, 1997. 97(8): p. 3083-3132.
[51] Bakker, E., "Electroanalysis with Membrane Electrodes and Liquid-Liquid Interfaces." Analytical Chemistry, 2016. 88(1): p. 395-413.
[52] Myers, M., et al., "Nitrate ion detection using AlGaN/GaN heterostructure-based devices without a reference electrode." Sensors and Actuators B-Chemical, 2013. 181: p. 301-305.
[53] Jasielec, J.J., et al., "Sensitivity and Selectivity of Ion-Selective Electrodes Interpreted Using the Nernst-Planck-Poisson Model." Analytical Chemistry, 2018. 90(15): p. 9644-9649.
[54] Zdrachek, E. and E. Bakker, "Describing Ion Exchange at Membrane Electrodes for Ions of Different Charge." Electroanalysis, 2018. 30(4): p. 633-640.
[55] Egorov, V.V., E.A. Zdrachek, and V.A. Nazarov, "Improved Separate Solution Method for Determination of Low Selectivity Coefficients." Analytical Chemistry, 2014. 86(8): p. 3693-3696.
[56] Cheng, K.L. and D.M. Zhu, "On calibration of pH meters." Sensors, 2005. 5(4-5): p. 209-219.
[57] Kaushal, S., et al., "Fabrication of a mercury(II) ion selective electrode based on poly-o-toluidine-zirconium phosphoborate." Rsc Advances, 2016. 6(4): p. 3150-3158.
[58] Bergveld, P., "Development, Operation, and Application of Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology." Ieee Transactions on Biomedical Engineering, 1972. Bm19(5): p. 342-&.
[59] Bergveld, P., "Thirty years of ISFETOLOGY - What happened in the past 30 years and what may happen in the next 30 years." Sensors and Actuators B-Chemical, 2003. 88(1): p. 1-20.
[60] Lee, C.S., S.K. Kim, and M. Kim, "Ion-Sensitive Field-Effect Transistor for Biological Sensing." Sensors, 2009. 9(9): p. 7111-7131.
[61] Miao, Y.Q., J.G. Guan, and J.R. Chen, "Ion sensitive field effect transducer-based biosensors." Biotechnology Advances, 2003. 21(6): p. 527-534.
[62] Tatavarthi, S.S., et al., "Rapid and Highly Sensitive Extended Gate FET-Based Sensors for Arsenite Detection Using a Handheld Device." Ecs Journal of Solid State Science and Technology, 2020. 9(11).
[63] Wakida, S.I., N. Sato, and K. Saito, "Copper(II)-selective electrodes based on a novel charged carrier and preliminary application of field-effect transistor type checker." Sensors and Actuators B-Chemical, 2008. 130(1): p. 187-192.
[64] Chen, Y.T., et al., "Beyond the Limit of Ideal Nernst Sensitivity: Ultra-High Sensitivity of Heavy Metal Ion Detection with Ion-Selective High Electron Mobility Transistors." Ecs Journal of Solid State Science and Technology, 2018. 7(9): p. Q176-Q183.
[65] Vandenberg, A., et al., "Sensitivity Control of Isfets by Chemical Surface Modification." Sensors and Actuators, 1985. 8(2): p. 129-148.
[66] Mai, P.T.N. and P.T. Hoa, "Fabrication of Solid Contact Ion Selective Electrode for Mercury (II) Using Conductive Polymer Membrane." Materials Transactions, 2015. 56(9): p. 1428-1430.
[67] Hsieh, C.H., I.Y. Huang, and C.Y. Wu, "A Low-hysteresis and High-sensitivity Extended Gate FET-based Chloride Ion-selective Sensor." 2010 Ieee Sensors, 2010: p. 358-361.
[68] Yao, P.C., J.L. Chiang, and M.C. Lee, "Application of sol-gel TiO2 film for an extended-gate H+ ion-sensitive field-effect transistor." Solid State Sciences, 2014. 28: p. 47-54.
[69] Spijkman, M., et al., "Beyond the Nernst-limit with dual-gate ZnO ion-sensitive field-effect transistors." Applied Physics Letters, 2011. 98(4).
[70] Bernard, C.A., et al., "Multiscale description and prediction of the thermomechanical behavior of multilayered plasticized PVC under a wide range of strain rate." Journal of Materials Science, 2018. 53(20): p. 14834-14849.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *