|
1. Rumjantseva, V. and K.M. Hoffmeister, Novel and unexpected clearance mechanisms for cold platelets. Transfus Apher Sci, 2010. 42(1): p. 63-70. 2. Reddoch-Cardenas, K.M., et al., Cold-stored platelets: A product with function optimized for hemorrhage control. Transfus Apher Sci, 2019. 58(1): p. 16-22. 3. Meeting-Issue-Summary-Topic-1-Considerations-for-cold-stored-platelets-Intended-for-Transfusion. 2019. 4. Meledeo, M.A., et al., Optimizing whole blood storage: hemostatic function of 35-day stored product in CPD, CP2D, and CPDA-1 anticoagulants. Transfusion, 2019. 59(S2): p. 1549-1559. 5. Aubron, C., et al., Transfusion of stored platelets: balancing risks and product availability. International Journal of Clinical Transfusion Medicine, 2016. Volume 4: p. 133-138. 6. 許鈴宜、程仁偉、林東燦、陳韻元、魏昇堂、侯勝茂, 2016年台灣血小板輸用概況. 醫 院 2019. 第五十二卷 第二期: p. 24-35. 7. Estcourt, L.J., Why has demand for platelet components increased? A review. Transfus Med, 2014. 24(5): p. 260-8. 8. 魏昇堂, 醫療財團法人台灣血液基金會110年年報. 2022. 9. Yanez-Mo, M., et al., Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 2015. 4: p. 27066. 10. Chargaff, E. and R. West, The Biological Significance of the Thromboplastic Protein of Blood. Journal of Biological Chemistry, 1946. 166(1): p. 189-197. 11. Wolf, P., The Nature and Significance of Platelet Products in Human Plasma. British Journal of Haematology, 1967. 13(3): p. 269-288. 12. Zaborowski, M.P., et al., Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience, 2015. 65(8): p. 783-797. 13. Doyle, L.M. and M.Z. Wang, Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 2019. 8(7). 14. Woith, E., G. Fuhrmann, and M.F. Melzig, Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci, 2019. 20(22). 15. Del Conde, I., et al., Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005. 106(5): p. 1604-11. 16. Stahl, A.L., et al., Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol, 2019. 34(1): p. 11-30. 17. Crescitelli, R., et al., Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles, 2013. 2. 18. Skotland, T., K. Sandvig, and A. Llorente, Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res, 2017. 66: p. 30-41. 19. Batista, B.S., et al., Identification of a conserved glycan signature for microvesicles. J Proteome Res, 2011. 10(10): p. 4624-33. 20. Vlassov, A.V., et al., Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta, 2012. 1820(7): p. 940-8. 21. Borish, L.C. and J.W. Steinke, 2. Cytokines and chemokines. J Allergy Clin Immunol, 2003. 111(2 Suppl): p. S460-75. 22. Tricarico, C., J. Clancy, and C. D'Souza-Schorey, Biology and biogenesis of shed microvesicles. Small GTPases, 2017. 8(4): p. 220-232. 23. Tang, T.T., et al., Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Diseases. Front Physiol, 2019. 10: p. 226. 24. Tao, S.C., S.C. Guo, and C.Q. Zhang, Platelet-derived Extracellular Vesicles: An Emerging Therapeutic Approach. Int J Biol Sci, 2017. 13(7): p. 828-834. 25. Jabalee, J., R. Towle, and C. Garnis, The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells, 2018. 7(8). 26. Liangsupree, T., E. Multia, and M.L. Riekkola, Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A, 2021. 1636: p. 461773. 27. Li, I. and B.Y. Nabet, Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer, 2019. 18(1): p. 32. 28. Jung, M.K. and J.Y. Mun, Sample Preparation and Imaging of Exosomes by Transmission Electron Microscopy. J Vis Exp, 2018(131). 29. Aatonen, M.T., et al., Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles, 2014. 3. 30. Flaumenhaft, R., A.T. Mairuhu, and J.E. Italiano, Platelet- and megakaryocyte-derived microparticles. Semin Thromb Hemost, 2010. 36(8): p. 881-7. 31. Gasecka, A., et al., Platelet extracellular vesicles as biomarkers for arterial thrombosis. Platelets, 2017. 28(3): p. 228-234. 32. Risitano, A., et al., Platelets and platelet-like particles mediate intercellular RNA transfer. Blood, 2012. 119(26): p. 6288-95. 33. Aatonen, M., M. Gronholm, and P.R. Siljander, Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost, 2012. 38(1): p. 102-13. 34. Morel, O., et al., Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol, 2011. 31(1): p. 15-26. 35. Cappellano, G., et al., Circulating Platelet-Derived Extracellular Vesicles Are a Hallmark of Sars-Cov-2 Infection. Cells, 2021. 10(1). 36. Puhm, F., E. Boilard, and K.R. Machlus, Platelet Extracellular Vesicles: Beyond the Blood. Arterioscler Thromb Vasc Biol, 2021. 41(1): p. 87-96. 37. Gremmel, T., A.L. Frelinger, 3rd, and A.D. Michelson, Platelet Physiology. Semin Thromb Hemost, 2016. 42(3): p. 191-204. 38. Holinstat, M., Normal platelet function. Cancer Metastasis Rev, 2017. 36(2): p. 195-198. 39. Fundamentals of Anatomy and Physiology(2nd). 2016: Wiley-Blackwell. 40. Tomaiuolo, M., L.F. Brass, and T.J. Stalker, Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv Cardiol Clin, 2017. 6(1): p. 1-12. 41. Farndale, R.W., Collagen-induced platelet activation. Blood Cells Mol Dis, 2006. 36(2): p. 162-5. 42. Yun, S.H., et al., Platelet Activation: The Mechanisms and Potential Biomarkers. Biomed Res Int, 2016. 2016: p. 9060143. 43. 林東燦、林冠州, 血液成分精要2011版. 2019, 台灣: 醫療財團法人台灣血液基金會. 44. Getz, T.M., Physiology of cold-stored platelets. Transfus Apher Sci, 2019. 58(1): p. 12-15. 45. Marini, I., et al., Cold storage of platelets in additive solution: the impact of residual plasma in apheresis platelet concentrates. Haematologica, 2019. 104(1): p. 207-214. 46. Aslan, J.E., et al., Platelet shape change and spreading. Methods Mol Biol, 2012. 788: p. 91-100. 47. Winokur, R. and J.H. Hartwig, Mechanism of shape change in chilled human platelets. Blood, 1995. 85(7): p. 1796-1804. 48. Karin M. Hoffmeister, E.C.J., Natasha A. Isaac, and J.H.H. Henrik Clausen, Thomas P. Stossel, Glycosylation Restores Survival of Chilled Blood Platelets. Science, 2003. 301(5639). 49. C. Thery, S.A., G. Raposo, and A. Clayton, Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological. Current Protocols in Cell Biology, 2006. 3: p. 3-22. 50. Konoshenko, M.Y., et al., Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int, 2018. 2018: p. 8545347. 51. Dynabeads streptavidin products for manual and automated protocols. 2018: Thermo fisher scientific. 52. Oksvold, M.P., A. Neurauter, and K.W. Pedersen, Magnetic bead-based isolation of exosomes. Methods Mol Biol, 2015. 1218: p. 465-81. 53. Hassabo, A. and A. Mohamed, Review of silicon-based materials for cellulosic fabrics with functional applications. Journal of Textiles, Coloration and Polymer Science, 2019. 0(0): p. 0-0. 54. Gianchandani, Y.B., O. Tabata, and H.P. Zappe, Comprehensive Microsystems. 2008: Elsevier. 55. El-Ali, J., P.K. Sorger, and K.F. Jensen, Cells on chips. Nature, 2006. 442(7101): p. 403-11. 56. B. . -H. Jo, L.M.V.L., K. M. Motsegood and D. J. Beebe, Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Microelectromechanical Systems, 2000. 9, no. 1: p. 76-81. 57. Pasirayi, G., et al., Microfluidic Bioreactors for Cell Culturing: A Review. Micro and Nanosystemse, 2011. 3(2): p. 137-160. 58. Kim, D. and A.E. Herr, Protein immobilization techniques for microfluidic assays. Biomicrofluidics, 2013. 7(4): p. 41501. 59. Zhou, J., N.H. Voelcker, and A.V. Ellis, Simple surface modification of poly(dimethylsiloxane) for DNA hybridization. Biomicrofluidics, 2010. 4(4): p. 46504. 60. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem Rev, 1996. 96(4): p. 1533-1554. 61. Wu, J., et al., Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chemical Physics Letters, 2014. 591: p. 227-232. 62. Chen, C., et al., Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles. Microfluidics and Nanofluidics, 2014. 16(5): p. 849-856. 63. Stott, S.L., et al., Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A, 2010. 107(43): p. 18392-7. 64. Pols, M.S. and J. Klumperman, Trafficking and function of the tetraspanin CD63. Exp Cell Res, 2009. 315(9): p. 1584-92. 65. Andreu, Z. and M. Yanez-Mo, Tetraspanins in extracellular vesicle formation and function. Front Immunol, 2014. 5: p. 442. 66. Laxmi, V., et al., Separation and Enrichment of Platelets from Whole Blood Using a PDMS-Based Passive Microdevice. Industrial & Engineering Chemistry Research, 2020. 59(10): p. 4792-4801. 67. Bray, D., Critical Point Drying of Biological Specimens for Scanning Electron Microscopy, in Supercritical Fluid Methods and Protocols. 2000. p. 235-243. 68. Morançais, M., J.-L. Mouget, and J. Dumay, Proteins and Pigments, in Microalgae in Health and Disease Prevention. 2018. p. 145-175. 69. Nordestgaard, B. and J. Rostgaard, Critical point drying versus freeze drying for scanning electron microscopy: a quantitative and qualitative study on isolated hepatocytes. Journal of Microscopy, 1985. 137. 70. Robards, A.W. and U. Sleytr. Low Temperature Methods in Biological Electron Microscopy. 1985. 71. Blaicher, A.M., et al., The Effect of Hydroxyethyl Starch on Platelet Aggregation In Vitro. Anesthesia & Analgesia, 1998. 86(6): p. 1318-1321. 72. Kozek-Langenecker, Sibylle A., Effects of Hydroxyethyl Starch Solutions on Hemostasis. Anesthesiology, 2005. 103(3): p. 654-660. 73. Toshikj, E., et al., Influence of different oxidizing systems on cellulose oxidation level: introduced groups versus degradation model. Cellulose, 2018. 26(2): p. 777-794. 74. Zhang, S., et al., Oxidized cellulose-based hemostatic materials. Carbohydr Polym, 2020. 230: p. 115585. 75. Coseri, S., et al., One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate. RSC Advances, 2015. 5(104): p. 85889-85897. 76. . W. Holle, S.C., M. R. Holl, J. M. Houkal and D. R. Meldrum, Characterization of Program Controlled CO2 Laser-Cut PDMS Channels for Lab-on-a-chip Applications. 2007 IEEE International Conference on Automation Science and Engineering, 2007. 77. Mohania, V., et al., Fabrication and Characterization of Porous Poly(dimethylsiloxane) (PDMS) Adhesives. ACS Applied Polymer Materials, 2020. 3(1): p. 130-140.
|