帳號:guest(52.15.196.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝宇翔
作者(外文):Hsieh, Yu-Siang
論文名稱(中文):利用不同免疫親裝置連續分離血小板之胞外體
論文名稱(外文):Continuous isolation of platelet extracellular vesicles using immunoaffinity devices
指導教授(中文):陳致真
指導教授(外文):Chen, Chih-chen
口試委員(中文):北森武彥
張新侯
口試委員(外文):Takehiko, Kitamori
Chang, Hsin-Hou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:109035513
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:71
中文關鍵詞:血小板細胞外囊泡免疫親和紙基裝置血小板細胞外囊泡捕手
外文關鍵詞:plateletextracellular vesicleimmunoaffinity paper-based deviceplatelet extracellular vesicle catcher
相關次數:
  • 推薦推薦:0
  • 點閱點閱:561
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今,世界各地的醫療機構都會使用富含血小板的血漿來治療患有某些先天性和後天性血小板功能不全的患者。但血小板只能在室溫(25℃)下儲存血小板,這是因為低溫環境會使血小板無法長時間在體內循環。因此,血小板難以用於“先天性血小板功能缺陷”的治療。然而,當血小板在室溫下儲存時,血小板可能容易受到細菌污染,從而縮短血小板的保質期,造成血小板的浪費。在本研究中,我們懷疑血小板不能在低溫下儲存的部分原因可能是由於血小板衍生的細胞外囊泡(EV)。
我們實驗室開發了一種免疫親和紙基裝置,可以用於分離的細胞外囊泡。因此,在本研究中,我們使用紙基裝置連續捕獲源自血小板的細胞外囊泡並必較不同儲存溫度的結果,以闡明血小板、血小板細胞外囊泡和溫度之間的關係。而最終目標將是解決血小板儲存問題。
在分析實驗初步結果後,我們發現紙基裝置本身會影響血小板的行為。因此,此論文另開發一種由PDMS製作的免疫親和多孔膜裝置,以取代紙基裝置。我們將其命名為血小板細胞外囊泡捕手(PEVC)。
Nowadays, medical institutions around the world will use platelet rich plasma to treat patients who have had some nature and nurture symptoms that have led to platelet insufficiency. But it can only store platelet at room temperature (25℃) that was because the low-temperature environment will prevent platelets from circulating in the body for a long time. Thus, the platelet was difficult to be used for the treatment of “congenital platelet function defects”. However, when the platelet was stored at room temperature, the platelet may be prone to bacteria contamination, which shortens the shelf life of the platelets and results in the waste of platelets. In this report, we suspected that the reason why platelets cannot be stored at low temperature may be partially due to extracellular vesicles (EV) derived from the platelet.
In the beginning, we have developed an immunoaffinity paper-based device that can isolate variable extracellular vesicles. So, in this study, we have used the paper-based device to continuously catch extracellular vesicles derived from the platelets and stored under different conditions to elucidate the relationship between platelet, platelet EV, and temperature. Then a final goal would be to solve the platelet storage problem.
After analysing the experiment results, we have discovered that the paper-based device itself would influence the platelet behaviour. Thus, a new design of immunoaffinity porous film would make by PDMS to replace the paper-based device. And we named it the platelet extracellular vesicle catcher (PEVC).
Abstract..i
List of figures..iv
List of tables..vi
Purpose..1
Chapter..1
Introduction..2
1-1 Extracellular vesicle..2
1-2 Platelet extracellular vesicle..5
1-3 Platelet characteristic..8
1-4 Cold-stored platelets physiology..10
1-5 Extracellular vesicle isolation process..11
1-6 Technology for Polydimethylsiloxane (PDMS) microfluidic..13
1-7 Self-assembled monolayers technology..14
Chapter 2. Experiment design..17
2-1. Paper-based device fabrication and function test..18
2-2. Optimal the electron microscope experiment..20
2-3. Optimal PEV isolation process..20
2-4. EV absorption ability test for experiment instrument..20
2-5. Platelet aggregation test by spectrophotometer..21
2-6. Main experiment..21
2-7. PEVC fabrication and function test..23
Chapter 3. Experiment method..25
3-1 HEK293T PalmGP EV isolation..25
3-2 Paper-based device fabrication and function test..26
3-3 Scan electron microscope image for EV on paper-based device..32
3-4 Optimal PEV isolation process..34
3-5 EV absorption ability test for experiment instrument..36
3-6 Platelet aggregation test by spectrophotometer..38
3-7 Main experiment..39
3-8 PEVC fabrication, surface modification and function test..41
Chapter 4. Results and discussion..46
4-1. Function test of paper-based device by PE-biotin..46
4-2. Saturation test of paper-based device by PE-biotin..47
4-3. Paper-based device EV catching test..48
4-4. Scan electron microscope image for EV..49
4-5. Optimal PEV isolation process..51
4-6. EV absorption ability on 6-well plate..51
4-7. EV pass and absorption ability on the 1μm insert..52
4-8. Main experiment..53
4-9. PEVC fabrication and function test..58
Chapter 5. Summary..62
Chapter 6. Future work..64
Chapter 7. Reference..66

1. Rumjantseva, V. and K.M. Hoffmeister, Novel and unexpected clearance mechanisms for cold platelets. Transfus Apher Sci, 2010. 42(1): p. 63-70.
2. Reddoch-Cardenas, K.M., et al., Cold-stored platelets: A product with function optimized for hemorrhage control. Transfus Apher Sci, 2019. 58(1): p. 16-22.
3. Meeting-Issue-Summary-Topic-1-Considerations-for-cold-stored-platelets-Intended-for-Transfusion. 2019.
4. Meledeo, M.A., et al., Optimizing whole blood storage: hemostatic function of 35-day stored product in CPD, CP2D, and CPDA-1 anticoagulants. Transfusion, 2019. 59(S2): p. 1549-1559.
5. Aubron, C., et al., Transfusion of stored platelets: balancing risks and product availability. International Journal of Clinical Transfusion Medicine, 2016. Volume 4: p. 133-138.
6. 許鈴宜、程仁偉、林東燦、陳韻元、魏昇堂、侯勝茂, 2016年台灣血小板輸用概況. 醫 院 2019. 第五十二卷 第二期: p. 24-35.
7. Estcourt, L.J., Why has demand for platelet components increased? A review. Transfus Med, 2014. 24(5): p. 260-8.
8. 魏昇堂, 醫療財團法人台灣血液基金會110年年報. 2022.
9. Yanez-Mo, M., et al., Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles, 2015. 4: p. 27066.
10. Chargaff, E. and R. West, The Biological Significance of the Thromboplastic Protein of Blood. Journal of Biological Chemistry, 1946. 166(1): p. 189-197.
11. Wolf, P., The Nature and Significance of Platelet Products in Human Plasma. British Journal of Haematology, 1967. 13(3): p. 269-288.
12. Zaborowski, M.P., et al., Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience, 2015. 65(8): p. 783-797.
13. Doyle, L.M. and M.Z. Wang, Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells, 2019. 8(7).
14. Woith, E., G. Fuhrmann, and M.F. Melzig, Extracellular Vesicles-Connecting Kingdoms. Int J Mol Sci, 2019. 20(22).
15. Del Conde, I., et al., Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 2005. 106(5): p. 1604-11.
16. Stahl, A.L., et al., Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol, 2019. 34(1): p. 11-30.
17. Crescitelli, R., et al., Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles, 2013. 2.
18. Skotland, T., K. Sandvig, and A. Llorente, Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res, 2017. 66: p. 30-41.
19. Batista, B.S., et al., Identification of a conserved glycan signature for microvesicles. J Proteome Res, 2011. 10(10): p. 4624-33.
20. Vlassov, A.V., et al., Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta, 2012. 1820(7): p. 940-8.
21. Borish, L.C. and J.W. Steinke, 2. Cytokines and chemokines. J Allergy Clin Immunol, 2003. 111(2 Suppl): p. S460-75.
22. Tricarico, C., J. Clancy, and C. D'Souza-Schorey, Biology and biogenesis of shed microvesicles. Small GTPases, 2017. 8(4): p. 220-232.
23. Tang, T.T., et al., Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Diseases. Front Physiol, 2019. 10: p. 226.
24. Tao, S.C., S.C. Guo, and C.Q. Zhang, Platelet-derived Extracellular Vesicles: An Emerging Therapeutic Approach. Int J Biol Sci, 2017. 13(7): p. 828-834.
25. Jabalee, J., R. Towle, and C. Garnis, The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells, 2018. 7(8).
26. Liangsupree, T., E. Multia, and M.L. Riekkola, Modern isolation and separation techniques for extracellular vesicles. J Chromatogr A, 2021. 1636: p. 461773.
27. Li, I. and B.Y. Nabet, Exosomes in the tumor microenvironment as mediators of cancer therapy resistance. Mol Cancer, 2019. 18(1): p. 32.
28. Jung, M.K. and J.Y. Mun, Sample Preparation and Imaging of Exosomes by Transmission Electron Microscopy. J Vis Exp, 2018(131).
29. Aatonen, M.T., et al., Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles, 2014. 3.
30. Flaumenhaft, R., A.T. Mairuhu, and J.E. Italiano, Platelet- and megakaryocyte-derived microparticles. Semin Thromb Hemost, 2010. 36(8): p. 881-7.
31. Gasecka, A., et al., Platelet extracellular vesicles as biomarkers for arterial thrombosis. Platelets, 2017. 28(3): p. 228-234.
32. Risitano, A., et al., Platelets and platelet-like particles mediate intercellular RNA transfer. Blood, 2012. 119(26): p. 6288-95.
33. Aatonen, M., M. Gronholm, and P.R. Siljander, Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost, 2012. 38(1): p. 102-13.
34. Morel, O., et al., Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol, 2011. 31(1): p. 15-26.
35. Cappellano, G., et al., Circulating Platelet-Derived Extracellular Vesicles Are a Hallmark of Sars-Cov-2 Infection. Cells, 2021. 10(1).
36. Puhm, F., E. Boilard, and K.R. Machlus, Platelet Extracellular Vesicles: Beyond the Blood. Arterioscler Thromb Vasc Biol, 2021. 41(1): p. 87-96.
37. Gremmel, T., A.L. Frelinger, 3rd, and A.D. Michelson, Platelet Physiology. Semin Thromb Hemost, 2016. 42(3): p. 191-204.
38. Holinstat, M., Normal platelet function. Cancer Metastasis Rev, 2017. 36(2): p. 195-198.
39. Fundamentals of Anatomy and Physiology(2nd). 2016: Wiley-Blackwell.
40. Tomaiuolo, M., L.F. Brass, and T.J. Stalker, Regulation of Platelet Activation and Coagulation and Its Role in Vascular Injury and Arterial Thrombosis. Interv Cardiol Clin, 2017. 6(1): p. 1-12.
41. Farndale, R.W., Collagen-induced platelet activation. Blood Cells Mol Dis, 2006. 36(2): p. 162-5.
42. Yun, S.H., et al., Platelet Activation: The Mechanisms and Potential Biomarkers. Biomed Res Int, 2016. 2016: p. 9060143.
43. 林東燦、林冠州, 血液成分精要2011版. 2019, 台灣: 醫療財團法人台灣血液基金會.
44. Getz, T.M., Physiology of cold-stored platelets. Transfus Apher Sci, 2019. 58(1): p. 12-15.
45. Marini, I., et al., Cold storage of platelets in additive solution: the impact of residual plasma in apheresis platelet concentrates. Haematologica, 2019. 104(1): p. 207-214.
46. Aslan, J.E., et al., Platelet shape change and spreading. Methods Mol Biol, 2012. 788: p. 91-100.
47. Winokur, R. and J.H. Hartwig, Mechanism of shape change in chilled human platelets. Blood, 1995. 85(7): p. 1796-1804.
48. Karin M. Hoffmeister, E.C.J., Natasha A. Isaac, and J.H.H. Henrik Clausen, Thomas P. Stossel, Glycosylation Restores Survival of Chilled Blood Platelets. Science, 2003. 301(5639).
49. C. Thery, S.A., G. Raposo, and A. Clayton, Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological. Current Protocols in Cell Biology, 2006. 3: p. 3-22.
50. Konoshenko, M.Y., et al., Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. Biomed Res Int, 2018. 2018: p. 8545347.
51. Dynabeads streptavidin products for manual and automated protocols. 2018: Thermo fisher scientific.
52. Oksvold, M.P., A. Neurauter, and K.W. Pedersen, Magnetic bead-based isolation of exosomes. Methods Mol Biol, 2015. 1218: p. 465-81.
53. Hassabo, A. and A. Mohamed, Review of silicon-based materials for cellulosic fabrics with functional applications. Journal of Textiles, Coloration and Polymer Science, 2019. 0(0): p. 0-0.
54. Gianchandani, Y.B., O. Tabata, and H.P. Zappe, Comprehensive Microsystems. 2008: Elsevier.
55. El-Ali, J., P.K. Sorger, and K.F. Jensen, Cells on chips. Nature, 2006. 442(7101): p. 403-11.
56. B. . -H. Jo, L.M.V.L., K. M. Motsegood and D. J. Beebe, Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Microelectromechanical Systems, 2000. 9, no. 1: p. 76-81.
57. Pasirayi, G., et al., Microfluidic Bioreactors for Cell Culturing: A Review. Micro and Nanosystemse, 2011. 3(2): p. 137-160.
58. Kim, D. and A.E. Herr, Protein immobilization techniques for microfluidic assays. Biomicrofluidics, 2013. 7(4): p. 41501.
59. Zhou, J., N.H. Voelcker, and A.V. Ellis, Simple surface modification of poly(dimethylsiloxane) for DNA hybridization. Biomicrofluidics, 2010. 4(4): p. 46504.
60. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chem Rev, 1996. 96(4): p. 1533-1554.
61. Wu, J., et al., Surface modification of nanosilica with 3-mercaptopropyl trimethoxysilane: Experimental and theoretical study on the surface interaction. Chemical Physics Letters, 2014. 591: p. 227-232.
62. Chen, C., et al., Paper-based immunoaffinity devices for accessible isolation and characterization of extracellular vesicles. Microfluidics and Nanofluidics, 2014. 16(5): p. 849-856.
63. Stott, S.L., et al., Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A, 2010. 107(43): p. 18392-7.
64. Pols, M.S. and J. Klumperman, Trafficking and function of the tetraspanin CD63. Exp Cell Res, 2009. 315(9): p. 1584-92.
65. Andreu, Z. and M. Yanez-Mo, Tetraspanins in extracellular vesicle formation and function. Front Immunol, 2014. 5: p. 442.
66. Laxmi, V., et al., Separation and Enrichment of Platelets from Whole Blood Using a PDMS-Based Passive Microdevice. Industrial & Engineering Chemistry Research, 2020. 59(10): p. 4792-4801.
67. Bray, D., Critical Point Drying of Biological Specimens for Scanning Electron Microscopy, in Supercritical Fluid Methods and Protocols. 2000. p. 235-243.
68. Morançais, M., J.-L. Mouget, and J. Dumay, Proteins and Pigments, in Microalgae in Health and Disease Prevention. 2018. p. 145-175.
69. Nordestgaard, B. and J. Rostgaard, Critical point drying versus freeze drying for scanning electron microscopy: a quantitative and qualitative study on isolated hepatocytes. Journal of Microscopy, 1985. 137.
70. Robards, A.W. and U. Sleytr. Low Temperature Methods in Biological Electron Microscopy. 1985.
71. Blaicher, A.M., et al., The Effect of Hydroxyethyl Starch on Platelet Aggregation In Vitro. Anesthesia & Analgesia, 1998. 86(6): p. 1318-1321.
72. Kozek-Langenecker, Sibylle A., Effects of Hydroxyethyl Starch Solutions on Hemostasis. Anesthesiology, 2005. 103(3): p. 654-660.
73. Toshikj, E., et al., Influence of different oxidizing systems on cellulose oxidation level: introduced groups versus degradation model. Cellulose, 2018. 26(2): p. 777-794.
74. Zhang, S., et al., Oxidized cellulose-based hemostatic materials. Carbohydr Polym, 2020. 230: p. 115585.
75. Coseri, S., et al., One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate. RSC Advances, 2015. 5(104): p. 85889-85897.
76. . W. Holle, S.C., M. R. Holl, J. M. Houkal and D. R. Meldrum, Characterization of Program Controlled CO2 Laser-Cut PDMS Channels for Lab-on-a-chip Applications. 2007 IEEE International Conference on Automation Science and Engineering, 2007.
77. Mohania, V., et al., Fabrication and Characterization of Porous Poly(dimethylsiloxane) (PDMS) Adhesives. ACS Applied Polymer Materials, 2020. 3(1): p. 130-140.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *