帳號:guest(18.191.132.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張書瑋
作者(外文):Chang, Shu-Wei
論文名稱(中文):提升高頻段頻寬之壓電式微型揚聲器
論文名稱(外文):Piezoelectric MEMS Microspeaker with Bandwidth Enhancement at High Frequency Range
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-Leun
口試委員(中文):李昇憲
羅松成
口試委員(外文):Li, Sheng-Shian
Lo, Sung-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:109035502
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:163
中文關鍵詞:微型揚聲器壓電式高音寬頻寬懸臂式多單體三角振膜反相驅動法
外文關鍵詞:MEMSMicrospeakerPiezoelectricTweeterAcousticWidebandwidthCantileverPZTMultiunitOut-of-phaseDriving
相關次數:
  • 推薦推薦:0
  • 點閱點閱:596
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以微機電技術為基礎,提出一高音壓電式微型揚聲器設計,目標取代入耳式耳機市場中的磁致動單體。儘管多數文獻以低驅動電壓下達到市場需求的聲壓等級,然而頻寬普遍不足,因此本研究以懸臂式振膜多單體的結構特性,於3 x 3 mm2的有效振膜面積限制內設計八片三角懸臂振膜,並調整幾何尺寸與邊界條件等兩種設計手法改變各自振膜的剛性,增加元件的共振頻率數目,拓展聲壓等級目標以上的頻寬表現。然而相關文獻已提到多剛性陣列單體於正常驅動時面臨相位問題,使得相鄰頻率響應極點之間的聲壓驟降,因此沿用文獻中的反相驅動法改善此缺點,提升頻寬內的聲壓表現。本研究使用已沉積壓電薄膜PZT之SOI晶圓,藉壓電製程平台批量製作出微型揚聲器單體。於人工耳系統中通以0.707 Vrms輸入電壓,並以90 dB聲壓等級界線劃分頻寬界線,反相驅動後頻寬將預期達到4 kHz至14 kHz,實現拓寬目標聲壓以上之頻寬,成功實現小體積、低功耗、高聲壓與寬頻寬等多項優勢的高音入耳式應用微型揚聲器。
This study has presented a design of a piezoelectric microspeaker with wide bandwidth. The device features small size and low power consumption due to the MEMS technology with piezoelectric materials, targeting in ear applications, such as earphones, to replace traditional microspeakers nowadays. Many researchers have proposed piezoelectric MEMS microspeaker design, however, the bandwidths with sufficient SPL are not wide enough. The study takes the advantage of multi-way unit by designing cantilever type microspeaker to enhance the bandwidth. Eight different stiffness of triangular cantilevers have been implemented on the active area of 3 x 3 mm2. The design methods can be separated into two ways. Four of the cantilevers are adjusted by the length of the units, and the other four are revised by creating slits at the anchors. It is anticipated that the multi-way device faces phase issue and SPL cancellation. Therefore, the proposed microspeaker will be driven by the out-of-phase driving method from the literature. It was fabricated from a PZT thin film on SOI wafer with piezoelectric standard platform. The bandwidth with SPL over 90 dB is from 4 kHz to 14 kHz by 0.707 Vrms driving signal in the ear simulator, which shows promising performance with small size, low power consumption, high SPL with wide bandwidth at high frequency range.
摘要 I
Abstract II
誌謝 III
目錄 VIII
圖目錄 XII
表目錄 XIX
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 5
1-2-1 靜電式 5
1-2-2 動圈式 8
1-2-3 壓電式 10
1-3 研究動機 19
1-4 全文架構 21
第二章 元件設計與聲學性能 38
2-1 聲學參數 38
2-1-1 聲壓等級 38
2-1-2 量測場域 39
2-1-3 總諧波失真 41
2-2 壓電材料 42
2-2-1 逆壓電效應 44
2-2-2 製備方法 45
2-3 設計概念 46
2-3-1 壓電材料選擇 47
2-3-2 高頻振膜 49
2-3-3 振膜幾何形狀 52
2-3-4 元件外觀與尺寸 53
2-3-5 中央三角懸臂振膜設計 55
2-3-6 外圍三角懸臂振膜設計 56
2-4 聲學表現及模擬結果 57
2-4-1 頻率響應 59
2-4-2 反相驅動法 60
第三章 製程流程與結果 76
3-1 製程流程 76
3-1-1 壓電層濕蝕刻製程 78
3-1-2 鉻金薄膜蒸鍍與上電極掀舉製程 79
3-1-3 白金下電極乾蝕刻 81
3-1-4 矽元件層乾蝕刻 83
3-1-5 背面深矽蝕刻 84
3-2 製程結果與討論 87
第四章 量測結果與討論 102
4-1 元件機械性能量測 102
4-1-1 介電常數與介電損失 102
4-1-2 楊氏模數 103
4-1-3 壓電係數 105
4-1-4 極化率—電場強度曲線 107
4-1-5 殘餘應力 108
4-1-6 元件共振頻率 111
4-2 元件聲學性能量測 112
4-2-1 頻率響應 113
4-2-2 線性度 116
4-2-3 總諧波失真 117
第五章 結論與未來工作 136
5-1 結論 136
5-2 未來工作 137
5-2-1 封裝與聲學表現 137
5-2-2 製作與初步量測結果 139
參考文獻 146
附錄A 空氣耦合 154
A-1 耦合背景 154
A-2 空氣耦合模擬 155
A-3 空氣耦合量測 157
[1] R. P. Feynman, “There's Plenty of Room at the Bottom,” Engineering and Science, 23 (5). pp. 22-36, 1960. (Caltech, February, 1960)
[2] H. Jones, “Whitepaper: Semiconductor Industry from 2015 to 2025,” Accessed on: Aug 4, 2015, [Online]. Available: https://www.semi.org/en/semiconductor-industry-2015-2025
[3] Yole Development, “A Brave New MEMS World: A $18.2B Market by 2026,” Accessed on: July 15, 2021, [Online]. Available: http://www.yole.fr/Status_Of_The_MEMS_Industry_Market_Update_2021.aspx
[4] Yole Development, “The Audio Industry Is Evolving at the Speed of Sound,” Accessed on: Oct 25, 2021, [Online]. Available: http://www.yole.fr/Microphones_Microspeakers_and_Audio_Processing_YoleGroup_Oct2021.aspx
[5] Yole Development, “Acoustic MEMS and Audio Solutions 2017,” Accessed on: Mar 2021, [Online]. Available: https://www.i-micronews.com/products/acoustic-mems-and-audio-solutions-2017/
[6] I. Shahosseini, E. Lefeuvre, E. Martincic, M. Woytasik, J. Moulin, S. Megherbi, R. Ravaud, G. Lemarquand, "Microstructured Silicon Membrane with Soft Suspension Beams for a High Performance MEMS Microspeaker," Microsystem Technologies, vol. 18, no. 11, pp. 1791-1799, 2012.
[7] Usound, [Online]. Available: https://www.usound.com/
[8] xMEMS, [Online]. Available: https://xmems.com/products/#montara
[9] AudioPixels, [Online]. Available: https://www.audiopixels.com.au/index.cfm/audio-pixels/
[10] Arioso Systems, [Online]. Available: https://arioso-systems.com/
[11] H. Wang, Y. Ma, Q. Zheng, K. Cao, Y. Lu, and H. Xie, “Review of Recent Development of MEMS Speakers,” Micromachines (Basel), vol. 12, no. 10, 2021.
[12] J. J. Neumann and K. J. Gabriel, “CMOS-MEMS Membrane for Audio-Frequency Acoustic Actuation,” Sensors and Actuators A: Physical, vol. 95, no. 2, pp. 175-182, 2002.
[13] C. Glacer, A. Dehé, D. Tumpold, and R. Laur, “Silicon Microspeaker with Out-of-plane Displacement,” The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp. 12-16, 2014.
[14] B. Kaiser, B. Kaiser, S. Langa, L. Ehrig, M. Stolz, H. Schenk, H. Conrad. H. Schenk, K. Schimmanz, D. Schuffenhauer, “Concept and Proof for an All-Silicon MEMS Micro Speaker Utilizing Air Chambers,” Microsystems & Nanoengineering, vol. 5, pp. 43, 2019.
[15] H. Conrad, H. Schenk, B. Kaiser, S. Langa, M. Gaudet, K. Schimmanz, M. Stolz, M. Lenz, “A Small-gap Electrostatic Micro-Actuator for Large Deflections,” Nature Communications, vol. 6, pp. 10078, 2015.
[16] S. S. Je, F. Rivas, R. E. Diaz, J. Kwon, J. Kim, B. Bakkaloglu, “A Compact and Low-Cost MEMS Loudspeaker for Digital Hearing Aids,” IEEE Transactions on Biomedical Circuits and Systems, vol. 3, no. 5, pp. 348-358, 2009.
[17] S. S. Je, N. Wang, H. C. Brown, D. P. Arnold, and J. Chae, “An Electromagnetically Actuated Microspeaker with Fully-Integrated Wax-Bonded Nd-Fe-B Micromagnets for Hearing Aid Applications,” TRANSDUCERS, pp. 885-888, 2009.
[18] G. Lemarquand, R. Ravaud, I. Shahosseini, V. Lemarquand, J. Moulin, and E. Lefeuvre, “MEMS Electrodynamic Loudspeakers for Mobile Phones,” Applied Acoustics, vol. 73, no. 4, pp. 379-385, 2012.
[19] I. Shahosseini, E. Lefeuvre, E. Martincic, M. Woytasik, J. Moulin, S. Megherbi, R. Ravaud, G. Lemarquand, “Microstructured Silicon Membrane with Soft Suspension Beams for a High Performance MEMS Microspeaker,” Microsystem Technologies, vol. 18, no. 11, pp. 1791-1799, 2012.
[20] I. Shahosseini, E. Lefeuvre, J. Moulin, E. Martincic, M. Woytasik, and G. Lemarquand, “Optimization and Microfabrication of High Performance Silicon-Based MEMS Microspeaker,” IEEE Sensors Journal, vol. 13, no. 1, pp. 273-284, 2013.
[21] I. Shahosseini, E. Lefeuvre, J. Moulin, M. Woytasik, E. Martincic, G. Pillonnet, G. Lemarquand, “Electromagnetic MEMS Microspeaker for Portable Electronic Devices,” Microsystem Technologies, vol. 19, no. 6, pp. 879-886, 2013.
[22] G. Sassine, I. Shahosseini, M. Woytasik, E. Martincic, J. Moulin, E. Lefeuvre, A. Houdouin, S. Durand, N, Yaakoubi, “High Acoustic Performance MEMS Microspeaker,” 2014 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), pp. 1-4, 2014.
[23] S. C. Ko, Y. C. Kim, S. S. Lee, S. H. Choi, and S. R. Kim, “Micromachined Piezoelectric Membrane Acoustic Device,” Sensors and Actuators A: Physical, vol. 103, no. 1, pp. 130-134, 2003.
[24] H. Wang, M. Li, Y. Yu, Z. Chen, Y. Ding, H. Jiang, H. Xie, “A Piezoelectric MEMS Loud Speaker Based on Ceramic PZT,” TRANSDUCERS & EUROSENSORS XXXIII, pp. 857-860, 2019.
[25] H. Wang, Z. Chen, and H. Xie, “A High-SPL Piezoelectric MEMS Loud Speaker Based on Thin Ceramic PZT,” Sensors and Actuators A: Physical, vol. 309, 2020.
[26] 白明憲 (2016)。《工程聲學》第五版。新北市:全華圖書。
[27] H. Wang, P. X. L. Feng, and H. Xie, “A Dual-Electrode MEMS Speaker Based on Ceramic PZT with Improved Sound Pressure Level by Phase Tuning,” 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 701-704, 2021.
[28] C. Luo, G.Z. Cao, and I.Y. Shen, “Enhancing Displacement of Lead-Zirconate-Titanate (PZT) Thin-Film Membrane Microactuators via a Dual Electrode Design,” Sensors and Actuators A: Physical, vol. 173, pp. 190-196, 2012.
[29] F. Casset, R. Dejaeger, B. Laroche, B. Desloges, Q. Leclere, R. Morisson, Y. Bohard, JP. Goglio, J. Escato, S. Fanget, “A 256 MEMS Membrane Digital Loudspeaker Array Based on PZT Actuators,” Procedia Engineering, vol. 120, pp. 49-52, 2015.
[30] H. H. Cheng, S. C. Lo, Z. R. Huang, Y. J. Wang, M. Wu, and W. Fang, “On the Design of Piezoelectric MEMS Microspeaker for the Sound Pressure Level Enhancement,” Sensors and Actuators A: Physical, vol. 306, 2020.
[31] H. Cheng, Z. Huang, S. Lo, Y. Wang, M. Wu, and W. Fang, “Piezoelectric Mems Microspeaker with Suspension Springs and Dual Electrode to Enhance Sound Pressure Level,” IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 767-770, 2019.
[32] H. H. Cheng, Z. R. Huang, M. Wu, and W. Fang, “Low Frequency Sound Pressure Level Improvement of Piezoelectric Mems Microspeaker Using Novel Spiral Spring with Dual Electrode,” TRANSDUCERS, pp. 2013-2016, 2019.
[33] H. H. Cheng, S. Lo, Y. Wang, Y. Chen, W. Lai, M. Hsieh, M. Wu, and W. Fang, “Piezoelectric Microspeaker Using Novel Driving Approach and Electrode Design for Frequency Range Improvement,” IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 513-516, 2020.
[34] Y. T. Lin, S. C. Lo, and W. Fang, “Two-Way Piezoelectric MEMS Microspeaker with Novel Structure and Electrode Design for Bandwidth Enhancement,” TRANSDUCERS, pp. 230-233, 2021.
[35] F. Stoppel, C. Eisermann, S. Gu-Stoppel, D. Kaden, T. Giese, and B. Wagner, “Novel Membrane-less Two-Way MEMS Loudspeaker Based on Piezoelectric Dual-Concentric Actuators,” TRANSDUCERS, pp. 2047-2050, 2017.
[36] F. Stoppel, A. Männchen, F. Niekiel, D. Beer, T. Giese, and B. Wagner, “New Integrated Full-range MEMS Speaker for In-ear Applications,” IEEE Micro Electro Mechanical Systems (MEMS), pp. 1068-1071, 2018.
[37] S. H. Tseng, S. C. Lo, Y. J. Wang, S. Lin, M. Wu, and W. Fang, “Sound Pressure and Low Frequency Enhancement Using Novel PZT MEMS Microspeaker Design,” IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), pp. 546-549, 2020.
[38] Y. J. Wang, S. C. Lo, M. L. Hsieh, S. D. Wang, Y. C. Chen, M. Wu, W. Fang, “Multi-Way In-Phase/Out-of-Phase Driving Cantilever Array for Performance Enhancement of PZT MEMS Microspeaker,” IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 83-84, 2021.
[39] T.D. Rossing(2017), Springer Handbook of Acoustics, 1st Ed., New York, NY: Spring-Verlag.
[40] H. Khanbareh(2016), Expanding the functionality of piezo-particulate composites. Proefschrift ter verkrijging van der grad van doctor aan de Technische Universiteit Delft.
[41] S. Priya, H. C. Song, Y. Zhou, R. Varghese, A. Chopra, S. G. Kim, I. Kanno, L. Wu, D. S. Ha, J. Ryu, R. G. Polcawich, “A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits,” Energy Harvesting and Systems, vol. 4, no. 1, pp. 3-39, 2017.
[42] G. D. Shilpa, K. Sreelakshmi and M. G. Ananthaprasad, “PZT Thin Film Deposition Techniques, Properties and its Application in Ultrasonic MEMS Sensors: A Review,” Materials Science and Engineering, vol. 149, 012190, 2016.
[43] Q. M. Wang, Q. Zhang, B. Xu, R. Liu, L. E. Cross, “Nonlinear Piezoelectric Behavior of Ceramic Bending Mode Actuators under Strong Electric Fields,” Journal of Applied Physics, vol. 86, pp. 3352-3360, 1999.
[44] K. Yang, Z. Li, Y. Jing, D. Chen, T. Ye, “Research on the Resonant Frequency Formula of V-shaped Cantilevers,” IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 59-62, 2009.
[45] KRYSTAL Inc, [Online]. Available: https://krystal.co.jp/en-product/
[46] 王銘瑋,「藉由扭轉軸設計提升壓電式單軸微掃描面鏡之光達性能」,國立清華大學碩士論文, 2021。
[47] 王逸加,「藉由多音路及反相驅動之懸臂樑振膜陣列達到壓電式微型揚聲器聲學性能之提升」,國立清華大學碩士論文, 2020
[48] B. Euan, U. Deepak, "Measurement of the Anisotropy of Young's Modulus in Single-Crystal Silicon," Journal of Microelectromechanical Systems, vol. 21, pp. 243-249, 2012.
[49] 王紹達,「單壓電層懸臂式麥克風之設計與分析」,國立清華大學碩士論文, 2021。
[50] M. Dekkers, H. Boschker, M. van Zalk, M. Nguyen, H. Nazeer, E. Houwman, G. Rijnders, “The Significance of the Piezoelectric Coefficient d31,eff Determined from Cantilever Structures,” Journal of Micromechanics and Microengineering, vol. 23, no. 2, 2013.
[51] I. Kanno, H. Kotera, K. Wasa, “Measurement of Transverse Piezoelectric Properties of PZT Thin Films,” Sensors and Actuators A: Physical, pp.68-74, 2003.
[52] M. Lebedev, J. Akedo, “What Thickness of the Piezoelectric Layer with High Breakdown Voltage is Required for the Microactuator?” Japanese Journal of Applied Physics, vol. 41, pp. 3344-3347, 2002.
[53] “Piezoelectric Characterization,” Accessed on: Jan 7, 2015. [Online]. Available:http://mentors.tanms-erc.org/mentor-responsibilities/piezoelectric-characterization
[54] V. Koval, G. Viola, Y. Tan, “Biasing Effects in Ferroic Materials”, Ferroelectric Materials - Synthesis and Characterization, London, United Kingdom: IntechOpen, 2015, [Online]. Available: https://www.intechopen.com/chapters/48734
[55] A. L. Kholkin, D. V. Taylor, N. Setter, “Poling Effect on the Piezoelectric Properties of Lead Zirconate Titanate Thin Films,” ISAF, pp. 69-72, 1998.
[56] W. Fang, J. A. Wickert, “Determining Mean and Gradient Residual Stresses in Thin Films Using Micromachined Cantilevers,” Journal of Micromechanics and Microengineering, vol. 6, pp. 301-309, 1996.
[57] 李俊宏,「微結構液動耦合效應之研究」,國立清華大學博士論文, 2010。
[58] S. Gorelick, J. R. Dekker, M. Leivo, U. Kantojärvi, “Air Damping of Oscillating MEMS Structures: Modeling and Comparison with Experiment,” COMSOL Conference, 2013.
(此全文20270802後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *