|
1. Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A., Hauser, K., ... & Wurman, P. R. (2016). Analysis and observations from the first amazon picking challenge. IEEE Transactions on Automation Science and Engineering, 15(1), 172-188. 2. 黃紹源、黃久銘、張凱強 (2021),擴增實境中基於深度學習之工件三維姿態估算,清華大學工業工程與工程管理學系,大四專題報告。 3. Jiang, Q., Tan, D., Li, Y., Ji, S., Cai, C., & Zheng, Q. (2020). Object detection and classification of metal polishing shaft surface defects based on convolutional neural network deep learning. Applied Sciences, 10(1), 87. 4. Saeed, F., Ahmed, M. J., Gul, M. J., Hong, K. J., Paul, A., & Kavitha, M. S. (2021). A robust approach for industrial small-object detection using an improved faster regional convolutional neural network. Scientific reports, 11(1), 1-13. 5. Mou, X., Cui, J., Yin, H., & Zhou, X. (2019, November). Tracking position and status of electric control switches based on YOLO detector. In International Conference on Intelligent Data Engineering and Automated Learning (pp. 184-194). Springer, Cham. 6. Li, H., Zheng, B., Sun, X., & Zhao, Y. (2017, October). CNN-based model for pose detection of industrial PCB. In 2017 10th International Conference on Intelligent Computation Technology and Automation (ICICTA) (pp. 390-393). IEEE. 7. Kim, Y. H., & Lee, K. H. (2019). Pose initialization method of mixed reality system for inspection using convolutional neural network. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 13(5), JAMDSM0093-JAMDSM0093. 8. Sun, Y., Kantareddy, S. N. R., Siegel, J., Armengol-Urpi, A., Wu, X., Wang, H., & Sarma, S. (2019, October). Towards industrial iot-ar systems using deep learn-ing-based object pose estimation. In 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC) (pp. 1-8). IEEE. 9. Li, Y., Mo, K., Shao, L., Sung, M., & Guibas, L. (2020, August). Learning 3d part assembly from a single image. In European Conference on Computer Vision (pp. 664-682). Springer, Cham. 10. Wang L., Wang J., Jiao S., Wang M., & Li, S. (2021). Fully convolutional net-work-based registration for augmented assembly systems, to appear, Journal of Manufacturing Systems. 11. Angel, N. A., Ravindran, D., Vincent, P. M., Srinivasan, K., & Hu, Y. C. (2022). Recent Advances in Evolving Computing Paradigms: Cloud, Edge, and Fog Technologies. Sensors, 22(1), 196. 12. Premsankar, G., Di Francesco, M., & Taleb, T. (2018). Edge computing for the Internet of Things: A case study. IEEE Internet of Things Journal, 5(2), 1275-1284. 13. Liu, C., Cao, Y., Luo, Y., Chen, G., Vokkarane, V., Yunsheng, M., ... & Hou, P. (2017). A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure. IEEE Transactions on Services Computing, 11(2), 249-261. 14. Skousen, P. L. (2011). Valve handbook. McGraw-Hill Education. 15. xIkwuegbu, I. (2021). AlphaGo Design Principle. 16. Adamopoulou, E., & Moussiades, L. (2020, June). An overview of chatbot tech-nology. In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 373-383). Springer, Cham. 17. He, Z., Feng, W., Zhao, X., & Lv, Y. (2020). 6D pose estimation of objects: Recent technologies and challenges. Applied Sciences, 11(1), 228. 18. Kim, S. H., & Hwang, Y. (2021). A Survey on Deep Learning Based Methods and Datasets for Monocular 3D Object Detection. Electronics, 10(4), 517. 19. Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge university press. 20. YOLOv4-tiny, https://github.com/AlexeyAB/darknet 21. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. 22. YOLOv4-tiny架構, https://www.twblogs.net/a/5f0294f1d496dddbb54259af 23. Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. In Pro-ceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 390-391). 24. Tekin, B., Sinha, S. N., & Fua, P. (2018). Real-time seamless single shot 6d object pose prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 292-301). 25. ImageNet, http://www.image-net.org/ 26. MS-COCO, http://cocodataset.org/#home 27. PASCAL VOC, http://host.robots.ox.ac.uk/pascal/VOC/ 28. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., & Navab, N. (2012, November). Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes. In Asian conference on computer vision (pp. 548-562). Springer, Berlin, Heidelberg. 29. Brachmann, E., Michel, F., Krull, A., Ying Yang, M., & Gumhold, S. (2016). Uncertainty-driven 6d pose estimation of objects and scenes from a single rgb image. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3364-3372). 30. Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes. Robotics: Science and Systems Conference (2018) 31. Saravanan, R., & Sujatha, P. (2018, June). A state of art techniques on machine learning algorithms: a perspective of supervised learning approaches in data classification. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 945-949). IEEE. 32. labelImg, https://github.com/tzutalin/labelImg 33. 周庭 (2020),基於深度卷積網路之擴增實境鞋品虛擬試穿,清華大學工業工程與工程管理學系,碩士論文。 34. To, T., Tremblay, J., McKay, D., Yamaguchi, Y., Leung, K., Balanon, A., ... & Birchfield, S. (2018). NDDS: NVIDIA deep learning dataset synthesizer. 35. Indoor CVPR 2009 Image Dataset, http://web.mit.edu/torralba/www/indoor.html 36. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Bern-ers-Lee, T. (1999). Hypertext transfer protocol--HTTP/1.1 (No. rfc2616). 37. Josefsson, S. (2006). The base16, base32, and base64 data encodings (No. rfc4648). 38. Hyndman, R. J. (2011). Moving Averages. 39. Dantzig, G. B. (2002). Linear programming. Operations research, 50(1), 42-47. 40. 楊敏生 (1994),模糊理論簡介,數學傳播中央研究院數學研究所,台北。 41. Stehman, S. V. (1997). Selecting and interpreting measures of thematic classifica-tion accuracy. Remote sensing of Environment, 62(1), 77-89. 42. 潘南飛、黃冠智,模糊線性規劃用於專案排成分析之研究,高雄應用科技大學土木工程與防災科技研究所,工程科技與教育學刊。 43. Sim, I. (2019). Mobile devices and health. New England Journal of Medi-cine, 381(10), 956-968. 44. Nickolls, J., & Dally, W. J. (2010). The GPU computing era. IEEE micro, 30(2), 56-69. 45. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE internet of things journal, 3(5), 637-646. 46. Popovski, P., Trillingsgaard, K. F., Simeone, O., & Durisi, G. (2018). 5G wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view. Ieee Access, 6, 55765-55779.
|