|
李洋寧、劉淑燕、李沁妍、吳佳容、鄧敏政、柯孝勳、李中生(2014)。大臺北地區大規模地震衝擊情境分析報告II :道路系統、水電設施、重要設施、情境綜整。NCDR 102-T15。國家災害防救科技中心。 陳玥心、王晉元 (2013)。應用變數產生法求解電動公車車輛排程問題。國立交通大學運輸科技與管理學系碩士論文。 張偉德、王逸琳 (2016)。大量傷患緊急醫療救護之最佳救護車派遣數學模式研究。國立成功大學工業與資訊管理學系碩士論文。 陳禮仁(2020)。近年世界重大天然災害的回顧與省思。土木水利,47(2),57–70。 Aslan, E. & Çelik, M. (2019). Pre-positioning of relief items under road/facility vulnerability with concurrent restoration and relief transportation. IISE Transactions, 51, 847–868 Benson, M., Koenig, K. L. & Schultz, C. H. (1996). Disaster Triage: Start, then Save: A New Method of Dynamic Triage for Victims of a Catastrophic Earthquake. Prehospital and Disaster Medicine, 11, 117–124 Bíl, M., Vodák, R., Kubeček, J., Bílová, M. & Sedoník, J. (2015). Evaluating road network damage caused by natural disasters in the Czech Republic between 1997 and 2010. Transportation Research Part A, 80, 90–103 Blackwell, T. H. & Kaufman, J. S. (2002). Response time effectiveness: comparison of response time and survival in an urban emergency medical services system. Acad Emerg Med, 9(4), 288–95 Budge, S., Ingolfsson, A. & Zerom, D. (2010). Empirical Analysis of Ambulance Travel Times:The Case of Calgary Emergency Medical Services. Empirical Analysis of Ambulance Travel Times Management Science, 56(4), 716–723 Burghout, W., Koutsopoulos, H. N., & Andreasson, I. (2006). A discrete-event mesoscopic traffic simulation model for hybrid traffic simulation. 2006 IEEE Intelligent Transportation Systems Conference, Toronto, Canada, 1102–1107 Chang, K. H., Hsiung, T. Y. and Chang, T. Y., (2022a). Multi-commodity distribution under uncertainty in disaster response phase: Model, solution method, and an empirical Study. European Journal of Operational Research, in press. Chang, K. H., Wu, Y. Z. and Ke, S. S., (2022b). A simulation-based decision support tool for dynamic post-disaster pedestrian evacuation. Decision Support System, in press. Chen, B. Y., Li, Q. & Lam, W. H.K. (2016). Finding the k reliable shortest paths under travel time uncertainty. Transportation Research Part B, 94, 189–203 Çoban, B., Scaparra, M. P. and O’Hanley, J. R., (2021). Use of OR in earthquake operations management: A review of the literature and roadmap for future research. International Journal of Disaster Risk Reduction, 65, 102539. Dean, M. D. and Nair, S. K., (2014). Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model. European Journal of Operational Research, 238(1), 363-373. der Heide, E. A. (2006). The importance of evidence-based disaster planning. Ann Emerg Med, 47, 34–49 Farahani, R. Z., Lotfi, M. M., Baghaian, A., Ruiz, R. and Rezapour, S., (2020). Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations. European Journal of Operational Research, 287(3), 787-819. Gaddam, H. K., & Rao, K. R. (2019). Speed-density functional relationship for heterogeneous traffic data: a statistical and theoretical investigation. Journal of Modern Transportation, 27(1), 61–74 Gharib, M., Ghomi, S. M. T. F. & Jolai, F. (2021). A dynamic dispatching problem to allocate relief vehicles after a disaster. Engineering Optimization, 53, 1999–2016 Gong, Q. and Batta, R., (2007). Allocation and reallocation of ambulances to casualty clusters in a disaster relief operation. IIE Transactions, 39(1), 27-39. Gormez, N., Koksalan, M. and Salman, F. S., (2011). Locating disaster response facilities in Istanbul. Journal of the Operational Research Society, 62(7), 1239-1252. Jayakrishnan, R., Mahmassani, H. S., & Hu, T. Y. (1994). An evaluation tool for advanced traffic information and management systems in urban networks. Transportation Research Part C: Emerging Technologies, 3(2), 129–147 Jotshi, A., Gong, Q. and Batta, R., (2009). Dispatching and routing of emergency vehicles in disaster mitigation using data fusion. Socio-Economic Planning Sciences, 43(1), 1-24. Kleywegt, A. J., Shapiro, A. and Homem-De-Mello, T., (2001). The sample average approximation method for stochastic discrete optimization. SIAM Journal on Optimization,12, 479–502. Lee, Y. C., Chen, Y. S. and Chen, A. Y., (2022). Lagrangian dual decomposition for the ambulance relocation and routing considering stochastic demand with the truncated Poisson. Transportation Research Part B: Methodological, 157, 1-23. Lei, C., Lin, W. H. and Miao, L., (2014). A stochastic emergency vehicle redeployment model for an effective response to traffic incidents. IEEE Transactions on Intelligent Transportation Systems, 16(2), 898-909. May A. D. Jr., & Keller H. E. M. (1967). Non-integer car-following models. Highway Research Record, 199, 19–32. Miller, A. F., Argon, N. T. and Ziya, S., (2013). Resource-based patient prioritization in Mass–Casualty incidents. Manufacturing & Service Operations Management, 15(3), 361-377. Mills, A. F. Argon, N. T. and Ziya, S., (2018). Dynamic distribution of patients to medical facilities in the aftermath of a disaster. Operations Research, 66(3), 597-892. Mills, A. F.,Argon, N. T. & Ziya, S. (2014). Resource-based patient prioritization in mass-casualty incidents. Manufacturing & Service Operations Management, 15, 361–377 Naoum-Sawaya, J. and Elhedhli, S., (2013). A stochastic optimization model for real-time ambulance redeployment. Computers & Operations Research, 40(8), 1972-1978. Park, J. O. (2010). Epidemiological characteristics and resource utilization of mass casualty incidents (MCI) and disaster in Korea, Ewha Womans University Repoussis, P. P., Paraskevopoulos, D. C., Vazacopoulos, A. and Hupert, N., (2016). Optimizing emergency preparedness and resource utilization in mass-casualty incidents. European Journal of Operational Research, 255(2), 531-544. Rocha, P., Ravetti, M., Mateus, G. & Pardalos P. (2008). Exact algorithms for a sche-duling problem with unrelated parallel machines and sequence and machine-dependent setup times. Computers & Operations Research, 35, 1250–1264 Sanci E. & Daskin M. S. (2019). Integrating location and network restoration decisions in relief networks under uncertainty. European Journal of Operational Research, 279, 335–350 Santoso, T., Ahmed S., Goetschalckx M. & Shapiro A. (2005). A stochastic programming approach for supply chain network design under uncertainty. European Journal of Operational Research, 167, 96–115 Shin, K. and Lee, T., (2020). Emergency medical service resource allocation in a mass casualty incident by integrating patient prioritization and hospital selection problems. IISE Transactions, 52(10), 1141-1155. Sung, I. and Lee, T., (2016). Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation. European Journal of Operational Research, 252(2), 623-634. Talarico, L., Meisel, F. and Sörensen, K., (2015). Ambulance routing for disaster response with patient groups. Computers & Operations Research, 56, 120-133. Tayfur, E. & Taaffe, K. (2009). A model for allocating resources during hospital evacuations. Computers & Industrial Engineering, 57, 1313–1323 Wang, Q. & Nie, X. (2019). A Stochastic Programming Model for Emergency Supply Planning Considering Traffic Congestion. IISE Transactions, 51, 910–920 Wei, K., Gao, Y., Zhang, W. & Lin, S. (2019). A Modified Dijkstra's Algorithm for Solving the Problem of Finding the Maximum Load Path. International Conference on Information and Computer Technologies, 14–17 Wilson, D. T., Hawe, G. I., Coates, G. and Crouch, R. S., (2012). A multi-objective combinatorial model of casualty processing in major incident response. European Journal of Operational Research, 230(3), 643-655. Zhen, L., Sun, Q., Zhang, W., Wang, K. & Yi, W. (2020). Column generation for low carbon berth allocation under uncertainty. Journal of the Operational Research Society, 72, 2225–2240
|