帳號:guest(18.224.69.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊富豪
作者(外文):Yang, Fu-Hao
論文名稱(中文):利用模擬最佳化演算法求解大量傷患事件下檢傷站設置與資源分配問題
論文名稱(外文):Simulation Optimization for Stochastic Casualty Collection Point Location and Resource Allocation Problem in a Mass Casualty Incident
指導教授(中文):張國浩
陳子立
指導教授(外文):Chang, Kuo-Hao
Chen, Tzu-Li
口試委員(中文):林李耀
張子瑩
口試委員(外文):Lin, Lee-Yaw
Chang, Tzu-Yin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:109034519
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:71
中文關鍵詞:檢傷站災後應變計畫大量傷患事件模擬最佳化離散事件模擬
外文關鍵詞:casualty collection pointdisaster response planmass casualty incidentsimulation optimizationdiscrete event simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
當大量傷患事件發生後,短時間內將會產生大量的受傷民眾,此時受限的醫療供給能量將無法滿足大量的醫療需求能量,因此為了有效的將醫療能量保留給真正需要醫療資源的傷患,將會在災區的附近設置臨時的檢傷站(Casualty Collection Point, CCP),當傷患從災區救出時將先送至檢傷站,藉由專業的檢傷人員將傷患分為輕度、中度、重度以及立即死亡的四種檢傷等級,並且優先將醫療資源保留給中度和重度的傷患,為了盡快將傷患送往醫院,因此在哪裡開設檢傷站以及稀缺資源的分配問題是在災後應變首須面對的一大課題。本研究參考臺灣消防隊救災流程,並以地震產生的多個災害點為例,在考量災後道路的失效可能性下,決定檢傷站的開設位置以及救護車/檢傷人員的資源分配,因為在災後影響傷患送到醫院的隨機因子相當多,例如傷患救出的順序、救護車的旅行時間等,因此本研究使用模擬最佳化的方法來解決研究的問題,利用離散事件模擬來建置模擬模型,透過模擬模型模擬災害發生後的關鍵救援行為,並提出了一種兩階段連續式的演算法來處理此問題,期望本研究能提供災害應變人員最佳的決策建議。
After a severe disaster strikes, a large number of casualties in need of urgent treatment, known as a mass casualty incident (MCI) event, gush out from multiple disaster areas in a very short period of time and overwhelm available resources of the local healthcare system. Therefore, this paper focuses on the effective design of casualty collection point (CCP) locations and the efficient allocation of limited emergency medical service (EMS) resources to transport the casualties quickly to appropriate hospitals and increase the survival rate of casualties for a rapid response. A hybrid simulation–optimization approach to optimize the CCP location and EMS resource allocation problem over mixed binary and integer feasible domains for the minimization of expected complete delivery time of all casualties from disaster region to hospital is presented in this work due to the stochastic and dynamic nature of the MCI system. A high-resolution stochastic discrete event simulation model considering time-varying stochastic casualty arrivals, random triage service time, and stochastic travel time caused by road network vulnerability is first constructed to describe a more detailed modeling of comprehensive MCI humanitarian logistics from the disaster regions to the hospitals. Then, a novel two-stage sequential algorithm, namely a combination of optimal computing budget allocation-based rapid-screening algorithm and adaptive particle global and hyperbox local search (ORSA-APGHLS), is developed to speed up convergence to the globally optimal solution under a limited simulation budget. We collaborate with the National Science and Technology Center for Disaster Reduction (NCDR) in Taiwan to conduct computational experiments to demonstrate the efficiency and efficacy of the proposed two-stage ORSA-APGHLS algorithm according to a potential earthquake scenario occurred in Tainan County in Taiwan. Through sensitivity analysis, the influence of different levels of scarce emergency medical resources and degrees of road damage on the expected complete delivery time of all casualties and the location-allocation decisions are investigated.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3論文架構 4
第二章 文獻回顧 6
2.1模擬在大量傷患應用相關文獻 6
2.2檢傷站設施選址相關文獻 8
2.3模擬最佳化 13
第三章 數學模型 15
3.1問題定義 15
3.2符號定義 16
3.3數學模型 17
第四章 研究方法 19
4.1災後大量傷患處置模擬模型建置 19
4.1.1模擬模型輸入參數以及旅行時間計算 19
4.1.2大量傷患處置模擬模型架構 21
4.1.3大量傷患處置模擬決策策略 23
4.1.4大量傷患處置模擬績效指標定義 24
4.2兩階段連續式搜尋演算法(ORSA-APGHLS algorithm) 26
4.2.1快速篩選法結合最佳模擬預算分配法(OCBA based rapid-screening algorithm,ORSA) 27
4.2.1.1初始設定方法(起始解產生方式) 29
4.2.1.2最佳資源分配法(OCBA-1 procedure) 31
4.2.1.3 候選解產生方式 32
4.2.2適應性粒子全域搜尋與超盒子區域搜尋法(APGHLS) 33
4.2.2.1適應性粒子全域搜尋(APGS) 36
4.2.2.2超盒子區域搜尋法(HLS) 39
第五章 數值實驗 41
5.1災後情境說明 41
5.2台南網路參數設定 44
5.3台南網路搜尋結果 45
第六章 實驗與參數分析 49
6.1演算法結果與參數分析 49
6.2台南中洲構造地震災害之敏感度分析 56
第七章 結論與未來研究 66
參考文獻 68
Alizadeha, M., Amiri-Aref, M., Mustafeec. N. and Matilal, S., (2019). A robust stochastic casualty collection points location problem. European Journal of Operational Research, 279, 965-983.
Apte, A., Heidtke, C. and Salmeron, J., (2015). Casualty collection points optimization: A study for the district of columbia. Interfaces, 45(2), 149-165.
Caunhye, A. M. and Nie, X., (2018). A stochastic programming model for casualty response planning during catastrophic health events. Transportation Science, 52(2), 229-496.
Caunhye, A. M., Li, M. and Nie, X., (2015). A location-allocation model for casualty response planning during catastrophic radiological incidents. Socio-Economic Planning Sciences, 50, 32-44.
Caunhye, A., Nie, X., and Pokharel, S., (2012). Optimization models in emergency logistics: A literature review. Socio-Economic Planning Sciences, 46(1), 4–13.
Chang, K. H., (2012). Stochastic Nelder–Mead simplex method - A new globally convergent direct search method for simulation optimization. European Journal of Operational Research, 220(3), 684-694.
Chang, K. H., Cuckler, R., Lee, S. L. and Lee, L. H., (2022a). Discrete conditional-expectation-based simulation optimization: Methodology and applications. European Journal of Operational Research, 298(1), 213-228.
Chang, K. H., Hsiung, T. Y. and Chang, T. Y., (2022b). Multi-commodity distribution under uncertainty in disaster response phase: Model, solution method, and an empirical Study. European Journal of Operational Research, in press.
Chang, K. H., Wu, Y. Z. and Ke, S. S., (2022c). A simulation-based decision support tool for dynamic post-disaster pedestrian evacuation. Decision Support System, in press.
Chen, C. H. and Lee, L. H., (2010). Stochastic simulation optimization - An optimal computing budget allocation. World Scientific Publishing Co., Inc.
Chen, C. H., He, D. and Fu, M., (2006). Efficient dynamic simulation allocation in ordinal optimization. IEEE Transactions on Automatic Control, 51(12), 2005–2009.
Daskin M. (2011). Network and discrete location: Models, algorithms and applications. Wiley, Hoboken. 2nd edition.
De Rouck, R., Debacker, M., Hubloue, I., Koghee, S. and Van Utterbeeck, F., (2018). SIMEDIS 2.0: On the road toward a comprehensive mass casualty incident medical management simulator. Proceedings of the 2018 Winter Simulation Conference, 2713-2724.
Dean, M. D. and Nair, S. K., (2014). Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model. European Journal of Operational Research, 238(1), 363-373.
Debacker, M., Van Utterbeeck, F., Ullrich, C., Dhondt, E. and Hubloue, I., (2016). SIMEDIS: A discrete-event simulation model for testing responses to mass casualty incidents. Journal of Medical Systems, 40, 273.
Dönmez, Z., Kara, B. Y., Karsu, O. and Saldanha-da-Gama, F., (2021). Humanitarian facility location under uncertainty: Critical review and future prospects. Omega, 102, 102393.
Drezner, T., (2004). Location of casualty collection points. Environment and Planning C: Government and Policy, 22, 899-912.
Drezner, T., Drezner, Z. and Salhi, S., (2006). A multi-objective heuristic approach for the casualty collection points location problem. Journal of the Operational Research Society, 57(6), 727-734.
Farahani, R. Z., Lotfi, M. M., Baghaian, A., Ruiz, R. and Rezapour, S., (2020). Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations. European Journal of Operational Research, 287(3), 787-819.
Gul, M., Fuat Guneri, A. and Gunal, M. M., (2020). Emergency department network under disaster conditions: The case of possible major Istanbul earthquake. Journal of the Operational Research Society, 71(5), 733-747.
Han, S. N. and Chen, G. D., (2000). 921 Jiji earthquake investigation report on deaths in Taichung County, Nantou County. Epidemic Report, 16(1), 1-9.
Haynes, B. and Freeman, C., (1989). Casualty collection point guidelines, preliminary draft. California Emergency Medical Services Authority, Retrieved from http: //cidbimena.desastres.hn/pdf/eng/doc6937.
Jain, A. K. and Dubes, R. C., (1988). Algorithms for clustering data. Prentice Hall, Englewood Cliff, New Jersey.
Jat, M. N. and Rafique, R. A., (2020). Mass-casualty distribution for emergency healthcare: A simulation analysis. International Journal of Disaster Risk Science, 11, 364–377.
Jayakrishnan, R., Mahmassani, H. S. and Hu, T. Y. (1994). An evaluation tool for advanced traffic information and management systems in urban networks. Transportation Research Part C: Emerging Technologies, 3(2), 129-147.
Jie, X., Nelson, B. L. and Hong, L. J., (2020). An adaptive hyperbox algorithm for high-dimensional discrete optimization via simulation problems. INFORMS Journal on Computing, 25(1), 133–146.
Ke, S. S., Wu, B. R., Lee, C. S., Huang, M. W., Wu, T. H., Liu, S. Y. and Wu, C. C., (2016). Development and application of a mesh-based earthquake impact assessment technology. International Forum on Hazard Management and Reduction for Changing Climate and Environment Based on Recent Experiences & 2016 UTAR-UST Workshop on Risk Reduction and Management.
Liu, Y. Cui, N. and Zhang, J., (2019). Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service. Transportation Research Part E: Logistics and Transportation Review, 128, 1-16.
Matloff, N. (2009). Introduction to discrete-event simulation and the SimPy language. Dept. of Computer Science, University of California, Davis, CA, USA, Tech. Rep. vol. 2.
McKay, M. D. Beckman, R. J. and Conover, W. J., (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239-245.
McLoughlin, D. (1985). A framework for integrated emergency management. Public Administration Review, 45(1), 165–172.
Mills, A. F. Argon, N. T. and Ziya, S., (2018). Dynamic distribution of patients to medical facilities in the aftermath of a disaster. Operations Research, 66(3), 597-892.
Oksuz, M. K. and Satoglu, S. L., (2020). A two-stage stochastic model for location planning of temporary medical centers for disaster response. International Journal of Disaster Risk Reduction, 44, 101426.
Rezapour, S., Baghaian, A., Naderi, N. and Farzaneh, M. A., (2022). Dynamic on-site treatment strategy for large-scale mass casualty incidents with rescue operation. Computers & Industrial Engineering, 163, 107796.
Salman, F. and Gül, S., (2014). Deployment of field hospitals in mass casualty incidents. Computers & Industrial Engineering, 74, 37-51.
Tang, P., He, F., Lin, X. and Li, M., (2020). Online-to-offline mobile charging system for electric vehicles: Strategic planning and online operation. Transportation Research Part D: Transport and Environment, 87, 102522.
Tsai, S. C., (2013). Rapid screening procedures for zero-one optimization via simulation. INFORMS Journal on Computing, 25(2), 193-393.
Tseng, W. W., Kuo, Y. C. and Chen, C. Y. (2018). On-site operation simulation of emergency medical services for single buildings collapse – Using Tainan earthquake as an example. Journal of Disaster Management, 7(2), 31-52.
Wang, Y. J, Chan, C. H., Lee, Y. T., Ma, K. F., Shyu, J. B. H., Rau, R. J. and Cheng, C. T., (2016). Probabilistic seismic hazard assessment for Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(3), 325-340.
Yeh, F. Y., Wu, J. L., Lin, Z. M., Ciou, C. J., Chen, J. Z., Hu, S. Y., Weng, Y. T., Sung, Y. C., Zhong, L. L., Huang, S. J., Hu, J. Z. and Chang, K. C., (2016). Meinong earthquake exploration special Report, The Magazine of The Chinese Institute of Civil and Hydraulic Engineering, 43(1), 4-15.
Zhou, T., Osorio, C. and Fields, E., (2017). A two-stage stochastic model for location planning of temporary medical centers for disaster response. International Journal of Disaster Risk Reduction, 44, 101426.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *