|
中文部分 1. 臺北市政府交通局(2020),109年全年度交通事故分析報告。 取自:https://www.roadsafety.taipei/News_Content.aspx?n=55E08C53904C54 B4&sms=478BDD9A52935513&s=B4000DC51A937E73 2. 張特彰、賴仲亮、蔡明妙、呂傳欽、許碧珊(2009)腳踏車運動引起之傷害及預防。基層醫療;24(12):439-443。 取自:https://www.tafm.org.tw/ehc-tafm/s/w/ebook/index_other/journalContent 1/663 3. optitrack動作捕捉系統-MEMSTEC 麥思科技有限公司。 取自:https://www.memstec.com.tw/product.php?cat=104 4. Vicon系統Plug In Gait Full-Body model。 取自:https://docs.vicon.com/display/Nexus212/Full+body+modeling+with+ Plug-in+Gait 5. Bryton踏頻感測器。 取自:https://www.brytonsport.com/#/sensor?id=cadence 6. Human3.6M數據集。 取自:http://vision.imar.ro/human3.6m/description.php
外文部分 1. Asplund, C., Webb, C., & Barkdull, T. (2005). Neck and back pain in bicycling. Current sports medicine reports, 4(5), 271-274. 2. Attewell, R. G., Glase, K., & McFadden, M. (2001). Bicycle helmet efficacy: a meta-analysis. Accident Analysis & Prevention, 33(3), 345-352. 3. Bailey, M., MAILLARDET, F., & Messenger, N. (2003). Kinematics of cycling in relation to anterior knee pain and patellar tendinitis. Journal of sports sciences, 21(8), 649-657. 4. Balan, A. O., Sigal, L., & Black, M. J. (2005). A quantitative evaluation of video-based 3D person tracking. Paper presented at the 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. 5. Bini, R., Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-476. 6. Bini, R. R., & Hume, P. (2016). A comparison of static and dynamic measures of lower limb joint angles in cycling: Application to bicycle fitting. Human Movement, 17(1), 36-42. 7. Blocken, B., Defraeye, T., Koninckx, E., Carmeliet, J., & Hespel, P. (2013). CFD simulations of the aerodynamic drag of two drafting cyclists. Computers & Fluids, 71, 435-445. 8. Bohlmann, J. T. (1981). Injuries in competitive cycling. The Physician and sportsmedicine, 9(5), 117-124. 9. Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2019). OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. IEEE transactions on pattern analysis and machine intelligence, 43(1), 172-186. 10. Chen, W., Jiang, Z., Guo, H., & Ni, X. (2020). Fall detection based on key points of human-skeleton using openpose. Symmetry, 12(5), 744. 11. Chen, Y.-L., & Liu, Y.-N. (2014). Optimal protruding node length of bicycle seats determined using cycling postures and subjective ratings. Applied Ergonomics, 45(4), 1181-1186. 12. Choi, J. S., Seo, J. W., Lee, J. S., Kim, J., & Tack, G. R. (2018). Effects of dynamic bike fitting by lower limb alignment on pedaling performance. Journal of Mechanics in Medicine and Biology, 18(08), 1840039. 13. Ci, H., Wang, C., Ma, X., & Wang, Y. (2019). Optimizing network structure for 3d human pose estimation. Paper presented at the Proceedings of the IEEE/CVF international conference on computer vision. 14. Connick, M. J., & Li, F.-X. (2013). The impact of altered task mechanics on timing and duration of eccentric bi-articular muscle contractions during cycling. Journal of Electromyography and Kinesiology, 23(1), 223-229. 15. Dettori, N. J., & Norvell, D. C. (2006). Non-traumatic bicycle injuries. Sports Medicine, 36(1), 7-18. 16. Diefenthaeler, F., Bini, R. R., Karolczak, A. P. B., & Carpes, F. P. (2008). Muscle activation during pedaling in different saddle position. Revista Brasileira de Cineantropometria e Desempenho Humano, 10(2), 161-169. 17. Dsouza, G., Maurya, D., & Patel, A. (2020). Smart gym trainer using Human pose estimation. Paper presented at the 2020 IEEE International Conference for Innovation in Technology (INOCON). 18. Du, Y., Wong, Y., Liu, Y., Han, F., Gui, Y., Wang, Z., . . . Geng, W. (2016). Marker-less 3d human motion capture with monocular image sequence and height-maps. Paper presented at the European conference on computer vision. 19. Fintelman, D., Sterling, M., Hemida, H., & Li, F.-X. (2014). Optimal cycling time trial position models: Aerodynamics versus power output and metabolic energy. Journal of Biomechanics, 47(8), 1894-1898. 20. Gösele-Koppenburg, A. (2016). Cycling. In Foot and Ankle Sports Orthopaedics (pp. 441-445): Springer. 21. Grant, S., Aitchison, T., Henderson, E., Christie, J., Zare, S., Mc Murray, J., & Dargie, H. (1999). A comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales, and Likert scales in normal subjects during submaximal exercise. Chest, 116(5), 1208-1217. 22. Hamley, E., & Thomas, V. (1967). Physiological and postural factors in the calibration of the bicycle ergometer. The Journal of physiology, 191(2), 55P-56P. 23. He Ling, W., & Yun-Ju, L. (2019). Occupational evaluation with Rapid Entire Body Assessment (REBA) via imaging processing in field. Paper presented at the Human Factors Society Conference. 24. Heil, D., Derrick, T., & Whittlesey, S. (1997). The relationship between preferred and optimal positioning during submaximal cycle ergometry. European journal of applied physiology and occupational physiology, 75(2), 160-165. 25. Hinz, T., Navarro-Guerrero, N., Magg, S., & Wermter, S. (2018). Speeding up the hyperparameter optimization of deep convolutional neural networks. International Journal of Computational Intelligence and Applications, 17(02), 1850008. 26. Holliday, W., Fisher, J., Theo, R., & Swart, J. (2017). Static versus dynamic kinematics in cyclists: A comparison of goniometer, inclinometer and 3D motion capture. European journal of sport science, 17(9), 1129-1142. 27. Hwang, J., Park, S., & Kwak, N. (2017). Athlete pose estimation by a global-local network. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 28. Insafutdinov, E., Andriluka, M., Pishchulin, L., Tang, S., Levinkov, E., Andres, B., & Schiele, B. (2017). Arttrack: Articulated multi-person tracking in the wild. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. 29. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., & Schiele, B. (2016). Deepercut: A deeper, stronger, and faster multi-person pose estimation model. Paper presented at the European conference on computer vision. 30. Ionescu, C., Papava, D., Olaru, V., & Sminchisescu, C. (2013). Human3. 6m: Large scale datasets and predictive methods for 3d human sensing in natural environments. IEEE transactions on pattern analysis and machine intelligence, 36(7), 1325-1339. 31. Iqbal, U., & Gall, J. (2016). Multi-person pose estimation with local joint-to-person associations. Paper presented at the European conference on computer vision. 32. Jafarzadeh, P., Virjonen, P., Nevalainen, P., Farahnakian, F., & Heikkonen, J. (2021). Pose Estimation of Hurdles Athletes using OpenPose. Paper presented at the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). 33. Kamel, A., Liu, B., Li, P., & Sheng, B. (2019). An investigation of 3D human pose estimation for learning Tai Chi: A human factor perspective. International Journal of Human–Computer Interaction, 35(4-5), 427-439. 34. Kang, J., Hoffman, J. R., Walker, H., Chaloupka, E. C., & Utter, A. C. (2003). Regulating intensity using perceived exertion during extended exercise periods. European Journal of Applied Physiology, 89(5), 475-482. 35. Kotler, D. H., Babu, A. N., & Robidoux, G. (2016). Prevention, evaluation, and rehabilitation of cycling-related injury. Current sports medicine reports, 15(3), 199-206. 36. LeMond, G. (1987). Gordis K. Greg LeMond's Complete Book of Bicycling. In: New York, NY, Perigee Books. 37. Liparoti, M., Lopez, E. T., & Agosti, V. (2020). Motion capture system: A useful tool to study cyclist’s posture. Journal of Physical Education and Sport, 20(4), 2364-2367. 38. Mündermann, A., Nigg, B. M., Stefanyshyn, D. J., & Humble, R. N. (2002). Development of a reliable method to assess footwear comfort during running. Gait & posture, 16(1), 38-45. 39. Ma, X., Su, J., Wang, C., Ci, H., & Wang, Y. (2021). Context modeling in 3d human pose estimation: A unified perspective. Paper presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 40. Martinez, J., Hossain, R., Romero, J., & Little, J. J. (2017). A simple yet effective baseline for 3d human pose estimation. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision. 41. Mehdizadeh, S., Arshi, A. R., & Davids, K. (2014). Effect of speed on local dynamic stability of locomotion under different task constraints in running. European journal of sport science, 14(8), 791-798. 42. Mehra, R. (2018). Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express, 4(4), 247-254. 43. Mellion, M. B. (1991). Common cycling injuries. Sports Medicine, 11(1), 52-70. 44. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. Paper presented at the Icml. 45. Neptune, R. R., & Hull, M. L. (1996). Methods for determining hip movement in seated cycling and their effect on kinematics and kinetics. Journal of Applied Biomechanics, 12(4), 493-507. 46. Newell, A., Yang, K., & Deng, J. (2016). Stacked hourglass networks for human pose estimation. Paper presented at the European conference on computer vision. 47. Ota, M., Tateuchi, H., Hashiguchi, T., Kato, T., Ogino, Y., Yamagata, M., & Ichihashi, N. (2020). Verification of reliability and validity of motion analysis systems during bilateral squat using human pose tracking algorithm. Gait & posture, 80, 62-67. 48. Park, S., Hwang, J., & Kwak, N. (2016). 3d human pose estimation using convolutional neural networks with 2d pose information. Paper presented at the European Conference on Computer Vision. 49. Pavlakos, G., Zhou, X., Derpanis, K. G., & Daniilidis, K. (2017). Coarse-to-fine volumetric prediction for single-image 3D human pose. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. 50. Peveler, W., Bishop, P., Smith, J., Richardson, M., & Whitehorn, E. (2005). COMPARING METHODS FOR SETTING SADDLE HEIGHT IN TRAINED CYCLISTS. Journal of Exercise Physiology Online, 8(1). 51. Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P. V., & Schiele, B. (2016). Deepcut: Joint subset partition and labeling for multi person pose estimation. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. 52. Price, D., & Donne, B. (1997). Effect of variation in seat tube angle at different seat heights on submaximal cycling performance in man. Journal of sports sciences, 15(4), 395-402. 53. Priego Quesada, J. I., Kerr, Z. Y., Bertucci, W. M., & Carpes, F. P. (2019). A retrospective international study on factors associated with injury, discomfort and pain perception among cyclists. PloS one, 14(1), e0211197. 54. Priego Quesada, J. I., Pérez-Soriano, P., Lucas-Cuevas, A. G., Salvador Palmer, R., & Cibrián Ortiz de Anda, R. M. (2017). Effect of bike-fit in the perception of comfort, fatigue and pain. Journal of sports sciences, 35(14), 1459-1465. 55. Qiao, S., Wang, Y., & Li, J. (2017). Real-time human gesture grading based on OpenPose. Paper presented at the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 56. Rahul, M. (2018). Review on motion capture technology. Global Journal of Computer Science and Technology. 57. Rhea, M. R. (2004). Determining the magnitude of treatment effects in strength training research through the use of the effect size. The Journal of Strength & Conditioning Research, 18(4), 918-920. 58. Ribeiro, T. H., & Vieira, M. L. H. (2016). Motion Capture Technology—Benefits and Challenges. Int. J. Innov. Res. Technol. Sci. Int. J. Innov. Res. Technol. Sci, 48(1), 2321-1156. 59. Salai, M., Brosh, T., Blankstein, A., Oran, A., & Chechik, A. (1999). Effect of changing the saddle angle on the incidence of low back pain in recreational bicyclists. British journal of sports medicine, 33(6), 398-400. 60. Sanderson, D. J., & Amoroso, A. T. (2009). The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling. Journal of Electromyography and Kinesiology, 19(6), e465-e471. 61. Scoz, R. D., Amorim, C. F., Espindola, T., Santiago, M., Mendes, J. J. B., de Oliveira, P. R., . . . Brito, R. N. (2021). Discomfort, pain and fatigue levels of 160 cyclists after a kinematic bike-fitting method: an experimental study. BMJ open sport & exercise medicine, 7(3), e001096. 62. Silberman, M. R. (2013). Bicycling injuries. Current sports medicine reports, 12(5), 337-345. 63. Silberman, M. R., Webner, D., Collina, S., & Shiple, B. J. (2005). Road bicycle fit. Clinical Journal of Sport Medicine, 15(4), 271-276. 64. Streisfeld, G. M., Bartoszek, C., Creran, E., Inge, B., McShane, M. D., & Johnston, T. (2017). Relationship between body positioning, muscle activity, and spinal kinematics in cyclists with and without low back pain: A systematic review. Sports health, 9(1), 75-79. 65. Tao, H., Al-Sulttani, A. O., Salih Ameen, A. M., Ali, Z. H., Al-Ansari, N., Salih, S. Q., & Mostafa, R. R. (2020). Training and testing data division influence on hybrid machine learning model process: application of river flow forecasting. Complexity, 2020. 66. Thompson, M. J., & Rivara, F. P. (2001). Bicycle-related injuries. American Family Physician, 63(10), 2007. 67. Umberger, B. R., & Martin, P. E. (2001). Testing the planar assumption during ergometer cycling. Journal of Applied Biomechanics, 17(1), 55-62. 68. Van Hoof, W., Volkaerts, K., O'Sullivan, K., Verschueren, S., & Dankaerts, W. (2012). Comparing lower lumbar kinematics in cyclists with low back pain (flexion pattern) versus asymptomatic controls–field study using a wireless posture monitoring system. Manual therapy, 17(4), 312-317. 69. Viswakumar, A., Rajagopalan, V., Ray, T., & Parimi, C. (2019). Human gait analysis using OpenPose. Paper presented at the 2019 Fifth International Conference on Image Information Processing (ICIIP). 70. Wang, J., Huang, S., Wang, X., & Tao, D. (2019). Not all parts are created equal: 3d pose estimation by modeling bi-directional dependencies of body parts. Paper presented at the Proceedings of the IEEE/CVF international conference on computer vision. 71. Wei, S.-E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolutional pose machines. Paper presented at the Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 72. Williamson, A., & Hoggart, B. (2005). Pain: a review of three commonly used pain rating scales. Journal of clinical nursing, 14(7), 798-804. 73. Xiaohan Nie, B., Wei, P., & Zhu, S.-C. (2017). Monocular 3d human pose estimation by predicting depth on joints. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision. 74. Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., & Wang, X. (2018). 3d human pose estimation in the wild by adversarial learning. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 75. Zecha, D., Einfalt, M., Eggert, C., & Lienhart, R. (2018). Kinematic pose rectification for performance analysis and retrieval in sports. Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 76. Zhang, Z., Li, S., Wan, B., Visentin, P., Jiang, Q., Dyck, M., . . . Shan, G. (2016). The influence of X-factor (trunk rotation) and experience on the quality of the badminton forehand smash. Journal of human kinetics, 53, 9. 77. Zhao, L., Peng, X., Tian, Y., Kapadia, M., & Metaxas, D. N. (2019). Semantic graph convolutional networks for 3d human pose regression. Paper presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 78. Zhou, X., Huang, Q., Sun, X., Xue, X., & Wei, Y. (2017). Towards 3d human pose estimation in the wild: a weakly-supervised approach. Paper presented at the Proceedings of the IEEE International Conference on Computer Vision. 79. Zhou, X., Sun, X., Zhang, W., Liang, S., & Wei, Y. (2016). Deep kinematic pose regression. Paper presented at the European Conference on Computer Vision.
|