|
1. Abu Zwaida, T., Pham, C., & Beauregard, Y. (2021). Optimization of inventory management to prevent drug shortages in the hospital supply chain. Applied Sciences, 11(6), 2726. 2. Blank, J., & Deb, K. (2020). Pymoo: Multi-objective optimization in python. IEEE Access, 8, 89497-89509. 3. Bhutia, P. W., & Phipon, R. (2012). Application of AHP and TOPSIS method for supplier selection problem. IOSR Journal of Engineering, 2(10), 43-50. 4. Cavalcante, I. M., Frazzon, E. M., Forcellini, F. A., & Ivanov, D. (2019). A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. International Journal of Information Management, 49, 86-97. 5. Charnes, A., & Cooper, W. W. (1957). Management models and industrial applications of linear programming. Management science, 4(1), 38-91. 6. Che, Z., Chiang, T.-A., & Lin, T.-T. (2021). A multi-objective genetic algorithm for assembly planning and supplier selection with capacity constraints. Applied Soft Computing, 101, 107030. 7. de Almeida, E. M., & Asada, E. N. (2015). NSGA-II applied to the multi-objective Distribution System Expansion Planning problem. Paper presented at the 2015 18th International Conference on Intelligent System Application to Power Systems (ISAP). 8. Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE transactions on evolutionary computation, 18(4), 577-601. 9. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197. 10. Deng, D. (2021). A Performance Evaluation Model Based on AHP and Its Application. Paper presented at the 2021 International Conference of Social Computing and Digital Economy (ICSCDE). 11. Dogan, I., & Güner, A. R. (2015). A reinforcement learning approach to competitive ordering and pricing problem. Expert Systems, 32(1), 39-48. 12. Dweiri, F., Kumar, S., Khan, S. A., & Jain, V. (2016). Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Systems with Applications, 62, 273-283. 13. Eiben, A., & Smith, J. (2015). Introduction to Evolutionary Computing: Springer. 14. Erceg, Ž., & Mularifović, F. (2019). Integrated MCDM model for processes optimization in supply chain management in wood company. Operational research in engineering sciences: Theory and applications, 2(1), 37-50. 15. Fallahpour, A., Olugu, E. U., & Musa, S. N. (2017). A hybrid model for supplier selection: integration of AHP and multi expression programming (MEP). Neural Computing and Applications, 28(3), 499-504. 16. Fashoto, S. G., Akinnuwesi, B., Owolabi, O., & Adelekan, D. (2016). Decision support model for supplier selection in healthcare service delivery using analytical hierarchy process and artificial neural network. African journal of business Management, 10(9), 209-232. 17. Ghorabaee, M. K., Zavadskas, E. K., Olfat, L., & Turskis, Z. (2015). Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica, 26(3), 435-451. 18. Golmohammadi, D. (2011). Neural network application for fuzzy multi-criteria decision making problems. International Journal of Production Economics, 131(2), 490-504. 19. Govindan, K., & Sivakumar, R. (2016). Green supplier selection and order allocation in a low-carbon paper industry: integrated multi-criteria heterogeneous decision-making and multi-objective linear programming approaches. Annals of Operations Research, 238(1-2), 243-276. 20. Hamdan, S., & Jarndal, A. (2017). A two stage green supplier selection and order allocation using AHP and multi-objective genetic algorithm optimization. Paper presented at the 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). 21. He, Z., Tran, K.-P., Thomassey, S., Zeng, X., Xu, J., & Yi, C. (2021). A deep reinforcement learning based multi-criteria decision support system for optimizing textile chemical process. Computers in Industry, 125, 103373. 22. Hosseini, S., & Al Khaled, A. (2019). A hybrid ensemble and AHP approach for resilient supplier selection. Journal of Intelligent Manufacturing, 30(1), 207-228. 23. Kemmer, L., von Kleist, H., de Rochebouët, D., Tziortziotis, N., & Read, J. (2018). Reinforcement learning for supply chain optimization. Paper presented at the European Workshop on Reinforcement Learning. 24. Lo, H.-W., Liou, J. J., Wang, H.-S., & Tsai, Y.-S. (2018). An integrated model for solving problems in green supplier selection and order allocation. Journal of Cleaner Production, 190, 339-352. 25. Mahdi, P. M., & Mohammad, S.-M. (2017). A hybrid genetic algorithm for dynamic virtual cellular manufacturing with supplier selection. The International Journal of Advanced Manufacturing Technology, 92(5-8), 3001-3017. 26. Majumder, M. (2015). Multi criteria decision making. In Impact of urbanization on water shortage in face of climatic aberrations (pp. 35-47): Springer. 27. Mondragon, A. E. C., Mastrocinque, E., Tsai, J.-F., & Hogg, P. J. (2019). An AHP and fuzzy AHP multifactor decision making approach for technology and supplier selection in the high-functionality textile industry. IEEE Transactions on Engineering Management. 28. Nazari-Shirkouhi, S., Shakouri, H., Javadi, B., & Keramati, A. (2013). Supplier selection and order allocation problem using a two-phase fuzzy multi-objective linear programming. Applied Mathematical Modelling, 37(22), 9308-9323. 29. Nazeri, A., & Bafruei, M. K. (2015). Implementation of meta-heuristic algorithms for supplier selection and evaluation and multi product order allocation. J. UMP Soc. Sci. Technol. Manag, 3(3). 30. Noy, N. F., & McGuinness, D. L. (2001). Ontology development 101: A guide to creating your first ontology. In: Stanford knowledge systems laboratory technical report KSL-01-05 and …. 31. Park, K., Kremer, G. E. O., & Ma, J. (2018). A regional information-based multi-attribute and multi-objective decision-making approach for sustainable supplier selection and order allocation. Journal of Cleaner Production, 187, 590-604. 32. Puška, L. A., Kozarević, S., Stević, Ž., & Stovrag, J. (2018). A new way of applying interval fuzzy logic in group decision making for supplier selection. Economic Computation & Economic Cybernetics Studies & Research, 52(2). 33. Ray, A. K., Jenamani, M., & Mohapatra, P. K. (2011). Supplier behavior modeling and winner determination using parallel MDP. Expert Systems with Applications, 38(5), 4689-4697. 34. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European Journal of operational research, 48(1), 9-26. 35. Siksnelyte-Butkiene, I., Zavadskas, E. K., & Streimikiene, D. (2020). Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: A review. Energies, 13(5), 1164. 36. Sureeyatanapas, P., Sriwattananusart, K., Niyamosoth, T., Sessomboon, W., & Arunyanart, S. (2018). Supplier selection towards uncertain and unavailable information: An extension of TOPSIS method. Operations Research Perspectives, 5, 69-79. 37. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction: MIT press. 38. Tirkolaee, E. B., Mardani, A., Dashtian, Z., Soltani, M., & Weber, G.-W. (2020). A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. Journal of Cleaner Production, 250, 119517. 39. Tusnial, A., Sharma, S. K., Dhingra, P., & Routroy, S. (2020). Supplier selection using hybrid multicriteria decision-making methods. International Journal of Productivity and Performance Management. 40. Vahidi, F., Torabi, S. A., & Ramezankhani, M. (2018). Sustainable supplier selection and order allocation under operational and disruption risks. Journal of Cleaner Production, 174, 1351-1365. 41. Yan, L. C., Yoshua, B., & Geoffrey, H. (2015). Deep learning. nature, 521(7553), 436-444. 42. Yannibelli, V., Pacini, E., Monge, D., Mateos, C., & Rodriguez, G. (2020). A Comparative Analysis of NSGA-II and NSGA-III for Autoscaling Parameter Sweep Experiments in the Cloud. Scientific Programming, 2020. 43. You, L., Yao, D.-Q., Sikora, R. T., & Nag, B. (2017). An Adaptive Supplier Selection Mechanism in E-Procurement Marketplace. Journal of International Technology and Information Management, 26(2), 94-116. 44. Zhang, Q., Guo, Z., Man, F., & Ma, J. (2020). Evaluation and selection of manufacturing suppliers in B2B E-commerce environment. Complexity, 2020.
|