帳號:guest(13.59.54.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張潔新
作者(外文):Chang, Chieh-Hsin
論文名稱(中文):應用滲透理論與模擬於災後路網連通性分析
論文名稱(外文):Post-Disaster Road Network Connectivity Analysis Using Percolation Theory and Simulation
指導教授(中文):張國浩
許鉅秉
指導教授(外文):Chang, Kuo-Hao
Sheu, Jiuh-Biing
口試委員(中文):林李耀
劉致灝
口試委員(外文):Lin, Lee-Yaw
Liu, Chih-Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:109034505
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:41
中文關鍵詞:災後路網連通性分析滲透理論瓶頸道路孤島區域
外文關鍵詞:Post-disaster road networkConnectivity analysisPercolation theoryRoad bottleneckIsolated area
相關次數:
  • 推薦推薦:0
  • 點閱點閱:119
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
道路網路的連通性對於災後的緊急應變行動有其無可取代的重要性。無論是疏散居民至緊急庇護所、運送傷患至醫療中心,或是分配救難物資至災區等,道路網路的連通性皆會影響救災行動的效率。以往的研究多運用解析模型分析災後路網的連通性,將一地區之道路設置相同的中斷機率,透過簡化的模型設定以方便探討災害對路網的衝擊。但真實情況為越接近地震斷層的區域,道路所受到的衝擊越劇烈。因此,本研究蒐集一地區中各路段在不同地震規模下的地表永久位移量,並運用易損性曲線計算每個路段的失效機率後,以模擬的方式建構災後路網。接著,運用滲透理論對模擬模型生成之災後路網進行連通性分析,探討的連通性議題包括不同地震規模下最大連通群集的變化、瓶頸道路的判別,以及識別一地區中所有潛在的孤島區域。於瓶頸道路與孤島區域的識別方法中,決策者可自行選擇分群演算法與訂定相關參數以配合減災政策的制定。依據其所欲配置的資源種類與資源多寡,調整合適的篩選方式以最大化資源的效益。本研究與國家災害防救科技中心合作,自中心所開發的地震衝擊資訊平台擷取道路網路與災害衝擊的大數據資料,實際將所提出之研究方法應用於台南市的路網。
Located in the circum-Pacific seismic belt and being one of the most densely populated countries in the world, Taiwan has suffered from earthquakes for years, causing considerable casualties and economic losses. Before a major earthquake occurs, understanding the potential damage and implementing appropriate disaster reduction measures can significantly reduce the impact of an earthquake. This study is conducted in collaboration with the Nation Science and Technology Center for Disaster Reduction (NCDR), using the road network data and earthquake impact data provided by the Taiwan Earthquake impact Research and Information Application platform (TERIA). We proposed a simulation model to evaluate the damage to the road network under various earthquake magnitudes, and adopt the concept of percolation theory to measure the changes in connectivity. Furthermore, we develop novel approaches to identify road bottlenecks and isolated areas through statistical methods and clustering algorithms. This study validates the feasibility of the approaches through an empirical study applied to Tainan City. The simulation results show that between earthquake magnitude 5.0 and 6.5, network connectivity decreases rapidly with a similar slope, but begins to flatten at larger magnitudes. In addition, most of the isolated areas are located in mountainous and coastal areas. The proposed method allows decision-makers to adjust algorithms and parameters so that the authorities can formulate more precise resource allocation strategies, prioritize road reinforcement plans, and improve the equity in access to emergency resources for victims.
摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 V
第一章 緒論 1
1.1研究背景 1
1.2研究目的 2
1.3論文架構 4
第二章 文獻回顧 5
2.1災害管理 5
2.2災害管理決策支援系統 6
2.3災後運輸網路系統 8
2.4災後路網績效指標 10
第三章 研究方法 12
3.1災後路網模型 12
3.2路網連通性分析 16
3.2.1滲透理論概念與應用 16
3.2.2瓶頸道路 18
3.2.3孤島區域 20
第四章 個案探討 23
4.1災後路網模擬結果 24
4.2瓶頸道路識別結果 28
4.3孤島區域識別結果 29
第五章 結論與未來研究 35
參考文獻 38
李洋寧、劉淑燕、李沁妍、吳佳容、鄧敏政、柯孝勳、李中生(2014)。大臺北地區大規模地震衝擊情境分析報告II:道路系統、水電設施、重要設施、情境綜整。NCDR 102-T15。國家災害防救科技中心。

Abdulla, B., A. Mostafavi, and B. Birgisson (2019). Characterization of the vulnerability of road networks to fluvial flooding using network percolation approach. Computing in Civil Engineering 2019: Smart Cities, Sustainability, and Resilience, 428–435.

Akbari, V., & Salman, F. S. (2017). Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity. European Journal of Operational Research, 257(2), 625–640.

Aydin, N. Y., Duzgun, H. S., Heinimann, H. R., Wenzel, F., & Gnyawali, K. R. (2018). Framework for improving the resilience and recovery of transportation networks under geohazard risks. International Journal of Disaster Risk Reduction, 31, 832–843.

Aydin, N. Y., Duzgun, H. S., Wenzel, F., & Heinimann, H. R. (2017). Integration of stress testing with graph theory to assess the resilience of urban road networks under seismic hazards. Natural Hazards, 91(1), 37–68.

Balal, E., Valdez, G., Miramontes, J., & Cheu, R. L. (2019). Comparative evaluation of measures for urban highway network resilience due to traffic incidents. International Journal of Transportation Science and Technology. 8(3), 304-317.

Balijepalli, C., & Oppong, O. (2014). Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas. Journal of Transport Geography, 39, 145–155.

Ben Othman, S., Zgaya, H., Dotoli, M., & Hammadi, S. (2017). An agent-based decision support system for resources' scheduling in emergency supply chains. Control Engineering Practice, 59, 27-43.

Bill Faulkner (2001). Towards a framework for tourism disaster management. Tourism Management, 22(2), 135-147.

Chang, L., Peng, F., Ouyang, Y., Elnashai, A. S., & Spencer, B. F. (2012). Bridge seismic retrofit program planning to maximize postearthquake transportation network capacity. Journal of Infrastructure Systems, 18(2), 75–88.

Dixit, V., Seshadrinath, N., & Tiwari, M. K. (2016). Performance measures based optimization of supply chain network resilience: A NSGA-II + Co-Kriging approach. Computers & Industrial Engineering, 93, 205–214.

Dong, S., Wang, H., Mostafavi, A., & Gao, J. (2019). Robust component: A robustness measure that incorporates access to critical facilities under disruptions. Journal of The Royal Society Interface, 16(157), 20190149.

Emanuele Lettieri, Cristina Masella, Giovanni Radaelli (2009). Disaster management: Findings from a systematic review. Disaster Prevention and Management, 18(2), 117-136.

Erik Rolland, Raymond A. Patterson, Keith Ward & Bajis Dodin (2010). Decision support for disaster management. Operations Management Research, 3, 68–79.

FEMA, U.S. (2020). Hazus Earthquake Model Technical Manual Hazus 4.2 SP3. Washington, D.C. Retrieved from https://www.fema.gov/sites/default/files/2020-10/fema_hazus_earthquake_technical_manual_4-2.pdf

Haghi, M., Fatemi Ghomi, S. M. T., & Jolai, F. (2017). Developing a robust multi-objective model for pre/post disaster times under uncertainty in demand and resource. Journal of Cleaner Production, 154, 188–202.

Jung, D., Tran Tuan, V., Quoc Tran, D., Park, M., & Park, S. (2020). Conceptual framework of an intelligent decision support system for smart city disaster management. Applied Sciences, 10(2), 666.

Karlaftis, M. G., Kepaptsoglou, K. L., & Lambropoulos, S. (2007). Fund allocation for transportation network recovery following natural disasters. Journal of Urban Planning and Development, 133(1), 82–89.

Kasaei, M., & Salman, F. S. (2016). Arc routing problems to restore connectivity of a road network. Transportation Research Part E: Logistics and Transportation Review, 95, 177–206.

Kaviani, A., Thompson, R. G., & Rajabifard, A. (2017). Improving regional road network resilience by optimised traffic guidance. Transportmetrica A: Transport Science, 13(9), 794–828.

Liu, H., & Wang, J. (2018). Vulnerability assessment for cascading failure in the highway traffic system. Sustainability, 10(7), 2333.

Marcianò, F. A., Musolino, G., & Vitetta, A. (2015). Signal setting optimization on urban road transport networks: The case of emergency evacuation. Safety Science, 72, 209–220.

Maria A. Konstantinidou, Konstantinos L. Kepaptsoglou, and Matthew G. Karlaftis (2014). Transportation network post-disaster planning and management: A review part I: Post-disaster transportation network performance. International Journal of Transportation, 2, 1-16.

Muggy, L., & Heier Stamm, J. L. (2017). Dynamic, robust models to quantify the impact of decentralization in post-disaster health care facility location decisions. Operations Research for Health Care, 12, 43–59.

Navid Khademi, Behrooz Balaei, Matin Shahri, Mojgan Mirzaei, Behrang Sarrafi, Moeid Zahabiun, Afshin S. Mohaymany (2015). Transportation network vulnerability analysis for the case of a catastrophic earthquake. International Journal of Disaster Risk Reduction, 12, 234-254.

Navid Sahebjamnia, S. Ali Torabi, S. Afshin Mansouri (2017). A hybrid decision support system for managing humanitarian relief chains. Decision Support Systems, 95, 12-26.

Newman, M. (2010). Networks: An introduction. Oxford University Press.

P. N. Tran and H. Saito (2016). Enhancing physical network robustness against earthquake disasters with additional links. Journal of Lightwave Technology, 34(22), 5226-5238.

Pamuncak, A., Guo, W., Soliman Khaled, A., & Laory, I. (2019). Deep learning for bridge load capacity estimation in post-disaster and conflict zones. Royal Society Open Science, 6(12), 190227.

Robabeh Robat mili, Kambod Amini Hosseini, Yasamin O. Izadkhah (2018). Developing a holistic model for earthquake risk assessment and disaster management interventions in urban fabrics. International Journal of Disaster Risk Reduction, 27, 355-365.

Shangjia Dong, Alireza Mostafizi, Haizhong Wang, Jianxi Gao (2020). Measuring the topological robustness of transportation networks to disaster-induced failures: A percolation approach. Journal of Infrastructure Systems, 26(2), 04020009.

Sunghoon Kim & Hwasoo Yeo (2017). Evaluating link criticality of road network based on the concept of macroscopic fundamental diagram, Transportmetrica A: Transport Science, 13(2), 162-193.

Tang, Y., & Huang, S. (2019). Assessing seismic vulnerability of urban road networks by a Bayesian network approach. Transportation Research Part D: Transport and Environment, 77(2), 390-402.

Twumasi-Boakye, R., & Sobanjo, J. O. (2019). A computational approach for evaluating post-disaster transportation network resilience. Sustainable and Resilient Infrastructure, 6(3-4), 235-251.

William A. Wallace and Frank De Balogh (1985). Decision support systems for disaster management. Special Issue: Emergency Management: A Challenge for Public Administration, 134-146.

Yaoming Zhou, Junwei Wang, Jiuh-Biing Sheu (2019). On connectivity of post-earthquake road networks. Transportation Research Part E, 123, 1-16.

Zengzhen Shao, Zujun Ma, Shulei Liu and Tongshuang Lv (2018). Optimization of a traffic control scheme for a post-disaster urban road network. Sustainability, 10(1), 68.

Zhang, N., & Alipour, A. (2020). Multi-scale robustness model for highway networks under flood events. Transportation Research Part D: Transport and Environment, 83(3), 102281.

Zhang, W., Wang, N., & Nicholson, C. (2017). Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering, 13(11), 1404–1413.

Zhou, Y., Sheu, J.-B., & Wang, J. (2017). Robustness assessment of urban road network with consideration of multiple hazard events. Risk Analysis, 37(8), 1477–1494.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *