帳號:guest(18.225.195.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王詠新
作者(外文):Wang, Yoon-Sin
論文名稱(中文):循環腫瘤細胞簇篩取與培養微型晶片應用於藥物測試
論文名稱(外文):A microchip for the sorting of circulating tumor cell clusters and drug testing
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):邱一
盧向成
口試委員(外文):Chiu, Yi
Lu, Shiang-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033610
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:68
中文關鍵詞:癌症轉移微流體循環腫瘤細胞確定性側向位移膠原蛋白
外文關鍵詞:cancer metastasismicrofluidicscirculating tumor cellsdeterministic lateral displacementcollagen
相關次數:
  • 推薦推薦:0
  • 點閱點閱:293
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
癌症,又稱為惡性腫瘤,泛指人體內細胞不正常的增生,且這些增生的細胞可能侵犯身體的其他部分。其中造成癌症高死亡率的原因為轉移。在轉移過程中,循環腫瘤細胞會從原生腫瘤脫離並流入至人體血液循環並且在其他地方著陸並繼續侵害。這使得癌症治療變的越發困難。因此,本論文主要致力於研究癌症治療中的循環腫瘤細胞。本研究開發整合兩個部份的微流體晶片系統:確定性側向位移結構與細胞抓取結構。藉由將人類癌症肺泡上皮細胞(A549)混入人血中的樣本,經過第一部分兩階段的確定性側向位移結構,可有效地將大團塊的目標細胞A549從樣本中分離出來流入第二階段,由不同大小的微柱將其抓取,以利後續的細胞培養以及藥物測試。
實驗結果顯示,確定性側向位移結構可以成功地將人體癌症肺泡上皮細胞(A549)從血液樣本中分離出來,並且有著高達90%的循環腫瘤細胞回收率。經過篩選後並在細胞培養模組內進行培養,經過72小時的培養,細胞有著86%的存活率,因此證明了晶片的可行性。下一階段並進行了病人的人血樣本,從雙和醫院孫偉倫博士那取得,並通過IRB認證。在此晶片下測試並透過染色,可以觀察到癌細胞成功地被篩選出來並捕捉。
Cancer, known as a Malignant tumor, is the abnormal hyperplasia of the cells in the human body, which may infringe on any part of a person. One of the reasons that cause the high death rate is called metastasis. During the process, Circulating Tumor Cells (CTCs) can break away from the primary tumor, flow into the blood circulation, and find another location to invade, making the cancer treatment more difficult. Therefore, the research on CTCs plays a vital role in cancer therapy. This study integrates the microfluidic chip, including the Deterministic Lateral Displacement (DLD) module and the cell-capturing and cell-cultivation module. During the first DLD part, the Human lung epithelial carcinoma cell line_(A549) mixed with the human blood was separated from other cells in the two-stage DLD separation device. Then the sorted-out cells were captured in the second part (the cell-capturing and cell-cultivation module). The CTCs were captured well by these micropillar structures and cultivated drug testing.
The experimental results show that A549 cells can be separated from human blood and have a high recovery rate of up to 90% in the Deterministic Lateral Displacement (DLD) module. After sorting out the cells, A549 can be captured in the chip and cultured with good cell viability of up to 86%. After testing the feasibility of the chip, we took the patient's blood sample from Shuanghe Hospital. The results show that under the whole blood sample, the chip can still carry out the separation of CTCs from the blood.
ABSTRACT I
摘要 II
致謝 III
目錄 1
圖表目錄 3
第一章 緒論 6
1.1 前言 6
1.2 研究動機與目的 7
1.3 研究背景 9
1.3.1 生醫微機電系統與實驗室晶片 9
1.3.2 癌症 10
1.4 文獻回顧 13
1.4.1 被動性循環腫瘤細胞分離技術 14
1.4.2 細胞捕捉培養分析平台 20
第二章 系統理論與晶片設計 23
2.1 系統理論 23
2.1.1 微流體晶片設計理論 23
2.1.2 確定性側向位移理論(Deterministic lateral displacement) 27
2.2 微流體晶片設計 31
3.1.1 詳細設計及功能介紹 31
3.1.2 晶片預處理(膠原蛋白貼附) 39
3.1.3 運作流程 39
3.1.4 與前人文獻比較 40
第三章 微流道晶片製成 42
3.1 製作流程 42
3.1.1 微流道母模製程 42
3.1.2 系統晶片製程 44
3.2 製程結果 46
第四章 實驗材料與方法 47
4.1 實驗材料 47
4.1.1 人類癌症肺泡上皮細胞(Human lung epithelial carcinoma cell line, A549)培養 47
4.1.2 人T淋巴細胞 (Human T lymphocyte cell line, Jurkat)培養 48
4.1.3 膠原蛋白(Collagen)稀釋 49
4.1.4 細胞螢光染劑 50
4.2 實驗設備 51
第五章 實驗結果與討論 52
5.1 細胞大小與分佈分析 52
5.2 前端晶片:DLD細胞分選模組 53
5.2.1 DLD參數設計 53
5.2.2 細胞分選效率 55
5.3 後段晶片:晶片捕捉與培養模組 60
5.3.1 細胞捕捉結果 60
5.3.2 細胞捕捉後培養結果 61
5.3.3 細胞培養死亡率 62
5.3.4 全血晶片測試 62
第六章 結論與未來展望 64
6.1 結論 64
6.2 未來展望 65
第七章 參考文獻 66
[1] T.-H. Huang, Published online at kmuh.org.tw , 2001
[2] X. Guan, "Cancer metastases: challenges and opportunities," Acta Pharm Sin B. ,2015;5(5):402-418. doi:10.1016/j.apsb.2015.07.005
[3] P.-J. Wang, Pulished online at canceraway.org.tw , 2021.
[4] C. Alix-Panabieres and K. Pantel, "Circulating Tumor Cells: Liquid Biopsy of Cancer," Clinical Chemistry, vol. 59, no. 1, pp. 110–118, 2013.
[5] M. Giuliano, A. Shaikh, H.-C. Lo, G. Arpino, S. Placido, X.-H. Zhang, M. Cristofanilli, R. Schiff, M. V. Trivedi, "Perspective on Circulating Tumor Cell Clusters: Why It Takes a Village to Metastasize," Cancer Res, 2018 Feb 15;78(4):845-852. doi: 10.1158/0008-5472.CAN-17-2748. Epub 2018 Feb 2. PMID: 29437766.
[6] Grand View Research, Inc. "Circulating Tumor Cells Market Size, Share & Trends Analysis Report By Technology, By Application (Clinical, Research), By Product, By Specimen (Bone Marrow, Blood), By Region, And Segment Forecasts, 2021 - 2027", 2021
[7] N. Aceto, A. Bardia, D.T. Miyamoto, M. C. Donaldson, B. S. Wittner, J. A. Spencer, M. Yu, A. Pely, A. Engstrom, H. Zhu, B. W. Brannigan, R. Kapur, S. L. Stott, T. Shioda, S. Ramaswamy, D. T. Ting, C. P. Lin, M. Toner, D. A. Haber, S. Maheswaran, "Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis," Cell, vol. 158, no. 5, pp. 1110–1122, 2014.
[8] Y. Hong, F. Fang, and Q. Zhang, "Circulating tumor cell clusters: What we know and what we expect (Review)," International Journal of Oncology, vol. 49, no. 6, pp. 2206–2216, 2016.
[9] M. Haemmerle, R. L. Stone, D. G. Menter, V. Afshar-Kharghan, and A. K. Sood, "The Platelet Lifeline To Cancer: Challenges and Opportunities," Cancer Cell, vol. 33, no. 6, pp. 965–983, 2018.
[10] B. M. Szczerba, F. Castro-Giner, M. Vetter, I. Krol, S. Gkountela, J. Landin, M. C. Scheidmann, C. Donato, R. Scherrer, J. Singer, C. Beisel, C. Kurzeder, V. Heinzelmann-Schwarz, C. Rochlitz, W. P. Weber, N. Beerenwinkel, and N. Aceto, "Neutrophils escort circulating tumour cells to enable cell cycle progression," Nature, vol. 566, no. 7745, pp. 553–557, 2019.
[11] J. H. Im, W. Fu, H. Wang, S. K. Bhatia, D. A. Hammer, M. A. Kowalska, and R. J. Muschel, "Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation," Cancer Research, vol. 64, no. 23, pp. 8613–8619, 2004.
[12] Y. Shen, Y. Yalikun, and Y. Tanaka, "Recent advances in microfluidic cell sorting systems," Sensors and Actuators, B: Chemical, vol. 282, no. November, pp. 268–281, 2019.
[13] A. Kulasinghe, J. Zhou, L. Kenny, I. Papautsky, and C. Punyadeera, "Capture of Circulating Tumour Cell Clusters Using Straight Microfluidic Chips," Cancers, vol. 11, no. 1, p. 89, 2019.
[14] K. Wang, L. Zhou, S. Zhao, Z. Cheng, S. Qiu, Y. Lu, Z. Wu, A. H. A. Abdel Wahab, H. Mao, and J. Zhao, "A microfluidic platform for high-purity separating circulating tumor cells at the single-cell level," Talanta, vol. 200, no. 865, pp. 169–176, 2019.
[15] A. F. Sarioglu, N. Aceto, N. Kojic, M. C. Donaldson, B. Hamza, A. Engstrom, H. Zhu, T. K. Sundaresan, T. David, X. Luo, A. Bardia, B. S. Wittner, S. Ramaswamy, D. T. Ting, S. L. Stott, R. Kapur, S. Maheswaran, D. A. Haber, M. Toner, et al., "A microfluidic device for label-free, physical capture of circulating tumor cell-clusters," Nat Methods, vol. 12, no. 7, pp. 685–691, 2015.
[16] L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, "Continuous Particle Separation Through Deterministic Lateral Displacement," Science, vol. 304, no. 5673, pp. 987–990, 2004.
[17] D. W. Inglis, J. A. Davis, R. H. Austin, and J. C. Sturm, "Critical particle size for fractionation by deterministic lateral displacement," Lab on a Chip, vol. 6, no. 5, pp. 655–658, 2006.
[18] K. Loutherback, J. D’Silva, L. Liu, A. Wu, R. H. Austin, and J. C. Sturm, "Deterministic separation of cancer cells from blood at 10 mL/min," AIP Advances, vol. 2, no. 4, pp. 1–7, 2012.
[19] F. Khodaee, S. Movahed, N. Fatouraee, and F. Daneshmand, "Numerical Simulation of Separation of Circulating Tumor Cells from Blood Stream in Deterministic Lateral Displacement (DLD) Microfluidic Channel," Journal of Mechanics, vol. 32, no. 4, pp. 463–471, 2016.
[20] S. H. Au, J. Edd, A. E. Stoddard, K. H. K. Wong, F. Fachin, S. Maheswaran, D. A. Haber, S. L. Stott, R. Kapur, and M. Toner, "Microfluidic isolation of circulating tumor cell clusters by size and asymmetry,'' Scientific Reports, vol. 7, no. 1, pp. 1–10, 2017.
[21] D. Carlo, N. Aghdam, L. P. Lee, "Single-Cell Enzyme Concentrations, Kinetics, and Inhibition Analysis Using High-Density Hydrodynamic Cell Isolation Arrays," Analytical Chemistry, vol.78, no. 14, pp. 4925-4930, 2001.

[22] C. Chuang, Y. Wu, Y. Hsu and C. Wei, "Dielectrophoretic chip with multilayer electrodes and microcavity arrays for trapping and programmable releasing of single cells," 2010 IEEE 5th International Conference on Nano/Micro Engineered and Molecular Systems, 2010, pp. 850-854, doi: 10.1109/NEMS.2010.5592190.
[23] J. Mcgrath, M. Jimenez, and H. Bridle, "Deterministic lateral displacement for particle separation : a review," Lab on a Chip, pp. 4139–4158, 2014.
[24] J. A. Davis, "Microfluidic Separation of Blood Components through Deterministic Lateral Displacement," PhD Thesis, 2008.
[25] S. Ranjan, K. K. Zeming, R. Jureen, D. Fisher, and Y. Zhang, "DLD pillar shape design for efficient separation of spherical and non-spherical bioparticles," Lab on a Chip, vol. 14, pp. 4250–4262, 2014.
[26] S.-J. Huang, "Microfluidic Biochip for Sorting of Circulating Tumor Cells and Cell Clusters from Whole Blood Sample," Master Thesis, 2020
[27] Y.-C. Cheng, Published online at scistore.colife.org.tw, 2017
[28] S.-H. Au, Published online at pb.ps-taiwan.org, 2017
[29] Y.-C. Zheng, "Micro Sorting and Migration System of Circulating Tumor Cell Cluster for Cancer Metastasis Studies," Master Thesis, 2021
[30] T. Salafi, Y. Zhang, Y. Zhang, "A Review on Deterministic Lateral Displaccement for Particcal Separation and Detection," Nano-Micro Lett, vol. 11, no. 1, pp. 1-33, 2019
[31] Z. Liu, W. Zhang, F. Huang, H. Feng, W. Shu, X. Xu, Y. Chen, "Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure,"Biosensors and Bioelectonics, vol. 7, pp. 11801, 2013
[32] J. A. Davis, D. W. Inglis, K. J. Morton, D. A. Lawrence, L. R. Huang, S. Y. Chou, J. C. Sturm, R. H. Austin, "Deterministic hydrodynamics: taking blood apart," Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 40, pp. 14779-14784, 2006
[33] D. W. Inglis, M. Lord, R. E. Nordon, "Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes," J. Micromech. Microeng, vol. 21, no. 5, pp. 54024, 2011
[34] N. Tottori, T. Nisisako, "Degas-Driven Deterministic Lateral Displacement in Poly(Dimethylsiloxane) Microfluidic Devices," Analytical Chemistry, vol. 91, no. 4, pp. 3093-3100, 2019
[35] K. K. Zeming , S. Ranjan, Y. Zhang, "Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device," Natural Communications, vol. 4, pp. 1-8, 2013
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *