|
1. Tkach, M. and C. Théry, Communication by extracellular vesicles: where we are and where we need to go. Cell, 2016. 164(6): p. 1226-1232. 2. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 2013. 200(4): p. 373-383. 3. El Andaloussi, S., et al., Extracellular vesicles: biology and emerging therapeutic opportunities. Nature reviews Drug discovery, 2013. 12(5): p. 347-357. 4. Yáñez-Mó, M., et al., Biological properties of extracellular vesicles and their physiological functions. Journal of extracellular vesicles, 2015. 4(1): p. 27066. 5. Veerman, R.E., et al., Immune cell-derived extracellular vesicles–functions and therapeutic applications. Trends in molecular medicine, 2019. 25(5): p. 382-394. 6. Knepper, M. and T. Pisitkun, Exosomes in urine: who would have thought…? Kidney international, 2007. 72(9): p. 1043-1045. 7. Baranyai, T., et al., Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PloS one, 2015. 10(12): p. e0145686. 8. Zlotogorski-Hurvitz, A., et al., Human saliva-derived exosomes: comparing methods of isolation. Journal of Histochemistry & Cytochemistry, 2015. 63(3): p. 181-189. 9. de la Torre Gomez, C., et al., “Exosomics”—A review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Frontiers in genetics, 2018. 9: p. 92. 10. György, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and molecular life sciences, 2011. 68(16): p. 2667-2688. 11. Elsharkasy, O.M., et al., Extracellular vesicles as drug delivery systems: Why and how? Advanced drug delivery reviews, 2020. 159: p. 332-343. 12. Karimi, N., et al., Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cellular and molecular life sciences, 2018. 75(15): p. 2873-2886. 13. Mertz, J., Introduction to optical microscopy. 2019: Cambridge University Press. 14. Van Der Pol, E., et al., Optical and non‐optical methods for detection and characterization of microparticles and exosomes. Journal of Thrombosis and Haemostasis, 2010. 8(12): p. 2596-2607. 15. Long, D.A., Raman spectroscopy. New York, 1977. 1. 16. Smith, E. and G. Dent, Modern Raman spectroscopy: a practical approach. 2019: John Wiley & Sons. 17. Puppels, G., et al., Description and performance of a highly sensitive confocal Raman microspectrometer. Journal of Raman Spectroscopy, 1991. 22(4): p. 217-225. 18. Clark, N.A., J.H. Lunacek, and G.B. Benedek, A study of Brownian motion using light scattering. American Journal of Physics, 1970. 38(5): p. 575-585. 19. Dieckmann, Y., et al., Particle size distribution measurements of manganese-doped ZnS nanoparticles. Analytical chemistry, 2009. 81(10): p. 3889-3895. 20. Leong, S.S., et al., Dynamic light scattering: effective sizing technique for characterization of magnetic nanoparticles, in Handbook of Materials Characterization. 2018, Springer. p. 77-111. 21. Bryant, G. and J.C. Thomas, Improved particle size distribution measurements using multiangle dynamic light scattering. Langmuir, 1995. 11(7): p. 2480-2485. 22. Filella, M., et al., Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997. 120(1-3): p. 27-46. 23. Korgel, B.A., J.H. van Zanten, and H.G. Monbouquette, Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering. Biophysical journal, 1998. 74(6): p. 3264-3272. 24. Dragovic, R.A., et al., Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine: Nanotechnology, Biology and Medicine, 2011. 7(6): p. 780-788. 25. Friedlander, S. and C. Wang, The self-preserving particle size distribution for coagulation by Brownian motion. Journal of Colloid and interface Science, 1966. 22(2): p. 126-132. 26. Liu, B., J. Goree, and O. Vaulina, Test of the Stokes-Einstein relation in a two-dimensional Yukawa liquid. Physical review letters, 2006. 96(1): p. 015005. 27. Chia, B.S., et al., Advances in exosome quantification techniques. TrAC Trends in Analytical Chemistry, 2017. 86: p. 93-106. 28. Filipe, V., A. Hawe, and W. Jiskoot, Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharmaceutical research, 2010. 27(5): p. 796-810. 29. Zheng, Y., et al., Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis. Experimental cell research, 2013. 319(12): p. 1706-1713. 30. Maas, S.L., J. De Vrij, and M.L. Broekman, Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. JoVE (Journal of Visualized Experiments), 2014(92): p. e51623. 31. Maas, S.L., et al., Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. Journal of Controlled Release, 2015. 200: p. 87-96. 32. Adan, A., et al., Flow cytometry: basic principles and applications. Critical reviews in biotechnology, 2017. 37(2): p. 163-176. 33. Ormerod, M.G. and P.R. Imrie, Flow cytometry, in Animal Cell Culture. 1990, Springer. p. 543-558. 34. Nolte, E.N., et al., Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology and Medicine, 2012. 8(5): p. 712-720. 35. Bialkowski, S.E., N.G. Astrath, and M.A. Proskurnin, Photothermal spectroscopy methods. 2019: John Wiley & Sons. 36. Chen, C., H. Shimizu, and T. Kitamori, Review of ultrasensitive readout for micro-/nanofluidic devices by thermal lens microscopy. Journal of Optical Microsystems, 2021. 1(2): p. 020901. 37. Gordon, J., et al., Long‐transient effects in lasers with inserted liquid samples. Journal of Applied Physics, 1965. 36(1): p. 3-8. 38. Uchiyama, K., et al., Thermal lens microscope. Japanese Journal of Applied Physics, 2000. 39(9R): p. 5316. 39. Tokeshi, M., et al., Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination. Analytical chemistry, 2001. 73(9): p. 2112-2116. 40. Tamaki, E., et al., Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. Analytical chemistry, 2002. 74(7): p. 1560-1564. 41. Kitamori, T., et al., Peer reviewed: thermal lens microscopy and microchip chemistry. 2004, ACS Publications. 42. Cassano, C.L., et al., Thermal lens microscopy as a detector in microdevices. Electrophoresis, 2014. 35(16): p. 2279-2291. 43. Riddick, J.A., W.B. Bunger, and T.K. Sakano, Organic solvents: physical properties and methods of purification. 1986. 44. Smirnova, A., et al., Desktop near‐field thermal‐lens microscope for thermo‐optical detection in microfluidics. Electrophoresis, 2012. 33(17): p. 2748-2751. 45. Harada, M., et al., Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water. Analytica chimica acta, 1995. 299(3): p. 343-347. 46. Kimura, H., et al., Assay of spherical cell surface molecules by thermal lens microscopy and its application to blood cell substances. Analytical chemistry, 2001. 73(17): p. 4333-4337. 47. Hiki, S., et al., UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules. Analytical chemistry, 2006. 78(8): p. 2859-2863. 48. Isoda, M., M. Fukuma, and A. Harata, Ultraviolet-excitation photothermal heterodyne interferometer as a micro-HPLC detector. Analytical Sciences, 2019. 35(12): p. 1311-1315. 49. Hisamoto, H., et al., On-chip integration of sequential ion-sensing system based on intermittent reagent pumping and formation of two-layer flow. Analytical chemistry, 2001. 73(22): p. 5551-5556. 50. Hisamoto, H., et al., On-chip integration of neutral ionophore-based ion pair extraction reaction. Analytical Chemistry, 2001. 73(6): p. 1382-1386. 51. Minagawa, T., M. Tokeshi, and T. Kitamori, Integration of a wet analysis system on a glass chip: determination of Co (II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy. Lab on a Chip, 2001. 1(1): p. 72-75. 52. Sato, K., et al., Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoasay in a microchip for cancer diagnosis. Analytical Chemistry, 2001. 73(6): p. 1213-1218. 53. Ihara, M., et al., Micro OS-ELISA: rapid noncompetitive detection of a small biomarker peptide by open-sandwich enzyme-linked immunosorbent assay (OS-ELISA) integrated into microfluidic device. Lab on a Chip, 2010. 10(1): p. 92-100. 54. Mawatari, K., M. Tokeshi, and T. Kitamori, Quantitative detection and fixation of single and multiple gold nanoparticles on a microfluidic chip by thermal lens microscope. Analytical sciences, 2006. 22(5): p. 781-784. 55. Wu, A.Y.T., et al., Multiresolution imaging using bioluminescence resonance energy transfer identifies distinct biodistribution profiles of extracellular vesicles and exomeres with redirected tropism. Advanced Science, 2020. 7(19): p. 2001467. 56. Horowitz, V.R., et al., Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye. Physical Review E, 2005. 72(4): p. 041710. 57. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 2008: John Wiley & Sons. 58. Hulst, H.C. and H.C. van de Hulst, Light scattering by small particles. 1981: Courier Corporation. 59. Gardiner, C., et al., Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. Journal of extracellular vesicles, 2014. 3(1): p. 25361. |