帳號:guest(18.217.224.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂羿醇
作者(外文):Lu, Yi-Chun
論文名稱(中文):透過熱透鏡顯微鏡檢測及定量胞外體
論文名稱(外文):Quantification and Detection of Extracellular Vesicles by Thermal Lens Microscopy
指導教授(中文):陳致真
指導教授(外文):Chen, Chih-Chen
口試委員(中文):北森武彥
清水久史
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033606
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:68
中文關鍵詞:胞外體熱透鏡顯微鏡微流體晶片檢測技術微流體
外文關鍵詞:Extracellular vesiclesThermal lens microscopyDetection in microchipsMicrofluidics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:85
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,胞外體(EVs)在生物學領域引起了高度關注。隨著分離和分析技術的顯著發展,越來越多胞外體的生理和病理功能被發現。胞外體在細胞通訊中擔任重要的角色,它們有助於將特定的脂質、蛋白質和核酸從親代細胞轉移到受體細胞。由於胞外體的多種特性,它們可以應用於生物領域的臨床醫學,也得以作為藥物載體。為了更深入的研究胞外體,我們應優先開發一種支持標準化且有效分析胞外體的方法。
本研究採用熱透鏡顯微鏡(TLM)結合微流體晶片進行胞外體量化分析。熱透鏡顯微鏡是一種靈敏的檢測技術,適用於檢測非螢光和無標記分子。通過與微流體晶片結合,能夠顯著增強樣品的特異性,也可以嘗試操控樣品。然而,熱透鏡顯微鏡在微流體領域仍未得到充分利用。為了擴大其用途並開發一種有效的分析方法,本研究主要集中在利用熱透鏡顯微鏡搭配微流體晶片對胞外體量化分析。
Recently, extracellular vesicles (EVs) raised high attention in the biological field. Since the separation and analysis technologies have been significantly developed, more and more physiological and pathological functions of EVs were discovered. EVs were found to play an important role in intercellular communication; they help transfer specific lipids, proteins, and nucleic acids from parent cells to recipient cells. Due to the variable characteristics of EVs, they can be applied to clinical medicine in the biological field, and also can be potentially served as drug carriers. In order to investigate more about EVs, a standardized and effective approach supporting EV analysis should be well-developed in priority.
In this research, the desk-top thermal lens microscope (DT-TLM) combined with a microfluidic chip was adopted to perform EV quantification analysis. Thermal lens microscopy (TLM) is a sensitive detection technique that is suitable for detecting non-fluorescent and label-free molecules. By integrating with the microfluidic chip, the sample specificity could be enhanced and the sample can also be possibly manipulated. However, TLM still remains underutilized within the field of microfluidics. To broaden its use and to develop an effective analysis approach, this research mainly focused on utilizing TLM as a quantification technique for EVs in a well-designed microfluidic chip.
LIST OF FIGURES VI
LIST OF TABLES VIII
CHAPTER1: Introduction 1
1.1 Research background 1
1.2 Introduction of Extracellular Vesicles (EVs) 1
1.3 EVs quantification techniques 4
1.3.1 Optical microscopy 5
1.3.2 Raman spectroscopy 6
1.3.3 Dynamic light scattering (DLS) 8
1.3.4 Nanoparticle tracing analysis (NTA) 9
1.3.5 Tunable resistive pulse sensing (tRPS) 11
1.3.6 High-resolution flow cytometry (hFC) 13
1.4 Introduction of Thermal Lens Microscopy (TLM) 15
1.4.1 Working principle of TLM 16
1.4.2 Instrument 23
1.4.3 Applications 24
1.5 Objectives 25
CHAPTER2: Experimental design and methods 26
2.1 Flow chart 26
2.2 Apparatus and experimental setup 27
2.2.1 Apparatus 27
2.2.2 Microfluidic device 28
2.2.3 Experimental setup 29
2.3 Experiment design 31
2.3.1 Concentration determination 34
2.3.2 Individual particle detection 35
2.4 Experiment methods 36
2.4.1 Sample preparation 36
2.4.2 Tunable resistive pulse sensing 38
2.4.3. Absorbance measurement 39
2.4.4 Concentration determination 40
2.4.5 Individual particle detection 41
CHAPTER 3: Results and discussion 43
3.1 Preliminary experiment 43
3.1.1 Absorption spectrum 43
3.2 Concentration determination 48
3.2.1 Measurement of sunset yellow FCF 48
3.2.2 Measurement of MCF-7 EVs 50
3.3 Individual particle detection 55
3.3.1 Verification of detection 55
3.3.2 Standard of determining the suitable concentration 56
3.3.3 Effect of flow rate on individual particle detection 56
3.3.4 Calibration curve of standard dyed polystyrene nanoparticles 58
3.3.5 Measurement of HEK-293T EVs 59
3.3.6 Influence of using different time constants 60
3.3.7 Peak profile of dyed polystyrene nanoparticles and HEK-293T EVs 61
CHAPTER4: Conclusion and future work 63
REFERENCES 64
1. Tkach, M. and C. Théry, Communication by extracellular vesicles: where we are and where we need to go. Cell, 2016. 164(6): p. 1226-1232.
2. Raposo, G. and W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 2013. 200(4): p. 373-383.
3. El Andaloussi, S., et al., Extracellular vesicles: biology and emerging therapeutic opportunities. Nature reviews Drug discovery, 2013. 12(5): p. 347-357.
4. Yáñez-Mó, M., et al., Biological properties of extracellular vesicles and their physiological functions. Journal of extracellular vesicles, 2015. 4(1): p. 27066.
5. Veerman, R.E., et al., Immune cell-derived extracellular vesicles–functions and therapeutic applications. Trends in molecular medicine, 2019. 25(5): p. 382-394.
6. Knepper, M. and T. Pisitkun, Exosomes in urine: who would have thought…? Kidney international, 2007. 72(9): p. 1043-1045.
7. Baranyai, T., et al., Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PloS one, 2015. 10(12): p. e0145686.
8. Zlotogorski-Hurvitz, A., et al., Human saliva-derived exosomes: comparing methods of isolation. Journal of Histochemistry & Cytochemistry, 2015. 63(3): p. 181-189.
9. de la Torre Gomez, C., et al., “Exosomics”—A review of biophysics, biology and biochemistry of exosomes with a focus on human breast milk. Frontiers in genetics, 2018. 9: p. 92.
10. György, B., et al., Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and molecular life sciences, 2011. 68(16): p. 2667-2688.
11. Elsharkasy, O.M., et al., Extracellular vesicles as drug delivery systems: Why and how? Advanced drug delivery reviews, 2020. 159: p. 332-343.
12. Karimi, N., et al., Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cellular and molecular life sciences, 2018. 75(15): p. 2873-2886.
13. Mertz, J., Introduction to optical microscopy. 2019: Cambridge University Press.
14. Van Der Pol, E., et al., Optical and non‐optical methods for detection and characterization of microparticles and exosomes. Journal of Thrombosis and Haemostasis, 2010. 8(12): p. 2596-2607.
15. Long, D.A., Raman spectroscopy. New York, 1977. 1.
16. Smith, E. and G. Dent, Modern Raman spectroscopy: a practical approach. 2019: John Wiley & Sons.
17. Puppels, G., et al., Description and performance of a highly sensitive confocal Raman microspectrometer. Journal of Raman Spectroscopy, 1991. 22(4): p. 217-225.
18. Clark, N.A., J.H. Lunacek, and G.B. Benedek, A study of Brownian motion using light scattering. American Journal of Physics, 1970. 38(5): p. 575-585.
19. Dieckmann, Y., et al., Particle size distribution measurements of manganese-doped ZnS nanoparticles. Analytical chemistry, 2009. 81(10): p. 3889-3895.
20. Leong, S.S., et al., Dynamic light scattering: effective sizing technique for characterization of magnetic nanoparticles, in Handbook of Materials Characterization. 2018, Springer. p. 77-111.
21. Bryant, G. and J.C. Thomas, Improved particle size distribution measurements using multiangle dynamic light scattering. Langmuir, 1995. 11(7): p. 2480-2485.
22. Filella, M., et al., Analytical applications of photon correlation spectroscopy for size distribution measurements of natural colloidal suspensions: capabilities and limitations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997. 120(1-3): p. 27-46.
23. Korgel, B.A., J.H. van Zanten, and H.G. Monbouquette, Vesicle size distributions measured by flow field-flow fractionation coupled with multiangle light scattering. Biophysical journal, 1998. 74(6): p. 3264-3272.
24. Dragovic, R.A., et al., Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine: Nanotechnology, Biology and Medicine, 2011. 7(6): p. 780-788.
25. Friedlander, S. and C. Wang, The self-preserving particle size distribution for coagulation by Brownian motion. Journal of Colloid and interface Science, 1966. 22(2): p. 126-132.
26. Liu, B., J. Goree, and O. Vaulina, Test of the Stokes-Einstein relation in a two-dimensional Yukawa liquid. Physical review letters, 2006. 96(1): p. 015005.
27. Chia, B.S., et al., Advances in exosome quantification techniques. TrAC Trends in Analytical Chemistry, 2017. 86: p. 93-106.
28. Filipe, V., A. Hawe, and W. Jiskoot, Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharmaceutical research, 2010. 27(5): p. 796-810.
29. Zheng, Y., et al., Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis. Experimental cell research, 2013. 319(12): p. 1706-1713.
30. Maas, S.L., J. De Vrij, and M.L. Broekman, Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing. JoVE (Journal of Visualized Experiments), 2014(92): p. e51623.
31. Maas, S.L., et al., Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. Journal of Controlled Release, 2015. 200: p. 87-96.
32. Adan, A., et al., Flow cytometry: basic principles and applications. Critical reviews in biotechnology, 2017. 37(2): p. 163-176.
33. Ormerod, M.G. and P.R. Imrie, Flow cytometry, in Animal Cell Culture. 1990, Springer. p. 543-558.
34. Nolte, E.N., et al., Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine: Nanotechnology, Biology and Medicine, 2012. 8(5): p. 712-720.
35. Bialkowski, S.E., N.G. Astrath, and M.A. Proskurnin, Photothermal spectroscopy methods. 2019: John Wiley & Sons.
36. Chen, C., H. Shimizu, and T. Kitamori, Review of ultrasensitive readout for micro-/nanofluidic devices by thermal lens microscopy. Journal of Optical Microsystems, 2021. 1(2): p. 020901.
37. Gordon, J., et al., Long‐transient effects in lasers with inserted liquid samples. Journal of Applied Physics, 1965. 36(1): p. 3-8.
38. Uchiyama, K., et al., Thermal lens microscope. Japanese Journal of Applied Physics, 2000. 39(9R): p. 5316.
39. Tokeshi, M., et al., Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination. Analytical chemistry, 2001. 73(9): p. 2112-2116.
40. Tamaki, E., et al., Single-cell analysis by a scanning thermal lens microscope with a microchip: direct monitoring of cytochrome c distribution during apoptosis process. Analytical chemistry, 2002. 74(7): p. 1560-1564.
41. Kitamori, T., et al., Peer reviewed: thermal lens microscopy and microchip chemistry. 2004, ACS Publications.
42. Cassano, C.L., et al., Thermal lens microscopy as a detector in microdevices. Electrophoresis, 2014. 35(16): p. 2279-2291.
43. Riddick, J.A., W.B. Bunger, and T.K. Sakano, Organic solvents: physical properties and methods of purification. 1986.
44. Smirnova, A., et al., Desktop near‐field thermal‐lens microscope for thermo‐optical detection in microfluidics. Electrophoresis, 2012. 33(17): p. 2748-2751.
45. Harada, M., et al., Application of coaxial beam photothermal microscopy to the analysis of a single biological cell in water. Analytica chimica acta, 1995. 299(3): p. 343-347.
46. Kimura, H., et al., Assay of spherical cell surface molecules by thermal lens microscopy and its application to blood cell substances. Analytical chemistry, 2001. 73(17): p. 4333-4337.
47. Hiki, S., et al., UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules. Analytical chemistry, 2006. 78(8): p. 2859-2863.
48. Isoda, M., M. Fukuma, and A. Harata, Ultraviolet-excitation photothermal heterodyne interferometer as a micro-HPLC detector. Analytical Sciences, 2019. 35(12): p. 1311-1315.
49. Hisamoto, H., et al., On-chip integration of sequential ion-sensing system based on intermittent reagent pumping and formation of two-layer flow. Analytical chemistry, 2001. 73(22): p. 5551-5556.
50. Hisamoto, H., et al., On-chip integration of neutral ionophore-based ion pair extraction reaction. Analytical Chemistry, 2001. 73(6): p. 1382-1386.
51. Minagawa, T., M. Tokeshi, and T. Kitamori, Integration of a wet analysis system on a glass chip: determination of Co (II) as 2-nitroso-1-naphthol chelates by solvent extraction and thermal lens microscopy. Lab on a Chip, 2001. 1(1): p. 72-75.
52. Sato, K., et al., Determination of carcinoembryonic antigen in human sera by integrated bead-bed immunoasay in a microchip for cancer diagnosis. Analytical Chemistry, 2001. 73(6): p. 1213-1218.
53. Ihara, M., et al., Micro OS-ELISA: rapid noncompetitive detection of a small biomarker peptide by open-sandwich enzyme-linked immunosorbent assay (OS-ELISA) integrated into microfluidic device. Lab on a Chip, 2010. 10(1): p. 92-100.
54. Mawatari, K., M. Tokeshi, and T. Kitamori, Quantitative detection and fixation of single and multiple gold nanoparticles on a microfluidic chip by thermal lens microscope. Analytical sciences, 2006. 22(5): p. 781-784.
55. Wu, A.Y.T., et al., Multiresolution imaging using bioluminescence resonance energy transfer identifies distinct biodistribution profiles of extracellular vesicles and exomeres with redirected tropism. Advanced Science, 2020. 7(19): p. 2001467.
56. Horowitz, V.R., et al., Aggregation behavior and chromonic liquid crystal properties of an anionic monoazo dye. Physical Review E, 2005. 72(4): p. 041710.
57. Bohren, C.F. and D.R. Huffman, Absorption and scattering of light by small particles. 2008: John Wiley & Sons.
58. Hulst, H.C. and H.C. van de Hulst, Light scattering by small particles. 1981: Courier Corporation.
59. Gardiner, C., et al., Measurement of refractive index by nanoparticle tracking analysis reveals heterogeneity in extracellular vesicles. Journal of extracellular vesicles, 2014. 3(1): p. 25361.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *