帳號:guest(3.128.30.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐佳伶
作者(外文):Hsu, Chia-Ling
論文名稱(中文):受破壞懸臂樑非線性動態特性之數值及實驗分析
論文名稱(外文):Numerical and Experimental Analysis of the Nonlinear Dynamics of a Cracked Cantilever Beam
指導教授(中文):田孟軒
指導教授(外文):Tien, Meng-Hsuan
口試委員(中文):黃育熙
白明憲
口試委員(外文):Huang, Yu-Hsi
Bai, Ming-Sian
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033603
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:51
中文關鍵詞:結構破壞懸臂樑非線性振動數值分析實驗分析
外文關鍵詞:damaged structurecantilever beamnonlinear vibrationnumerical analysisexperimental validation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:62
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
透過監控結構振動訊號以識別出機械、航太、及土木系統中是否存在破壞為相當重要的研究問題。當結構具有裂紋時,其斷面處會展現出間歇性開闔之非線性動態現象,因此無法使用線性振動的方法進行分析及監測。為了了解具裂紋結構的複雜非線性動態行為,本研究透過創新的數值方法以及實驗方法分析一具有斷裂面懸臂樑的非線性振動現象,並討論斷裂面參數對於振動特性的影響。
首先,本研究利用一離散元素方法(discrete element method)對一具有裂紋的懸臂樑進行建模,並使用雙線性剛性(bilinear stiffness)描述結構於斷裂面的間歇性開闔現象 , 接著應用一近期開發的混成 解析數值 (hybrid symbolic numeric computational)方法估算懸臂樑於受到簡諧激振時的動態響應。我們最後透過實驗工作驗證數值分析的準確性。本研究發現具有裂紋的懸臂樑會展現出頻率偏移、次諧波共振(subharmonic resonance)、及渾沌(chaotic motion)等非線性現象,且上述現象可作為結構受到破壞時的識別特徵。本文最後提出一透過掃頻進行破壞識別的策略,並提出未來研究方向。
Structural damage occurs in a variety of civil, mechanical, and aerospace engineering systems, and it is critical to effectively identify such damage in order to prevent catastrophic failures. When cracks are present in a structure, the breathing phenomenon that occurs between crack surfaces typically triggers nonlinearity in the
dynamic response. In this work, in order to thoroughly understand the nonlinear effect of cracks on structural dynamics, both numerical and experimental analyses are conducted to investigate the crack-induced nonlinear dynamics of cantilever beams. First, a modeling method referred to as the discrete element (DE) method is employed to construct a model of a cracked beam. The DE model is able to characterize the breathing phenomenon of cracks. Next, a simulation technique referred to as the hybrid symbolic numeric computational (HSNC) method is used to analyze the nonlinear response of the cracked beam. The HSNC method provides an efficient way to evaluate both stationary and non-stationary dynamics of cracked systems since it combines efficient linear techniques with an optimization tool to capture the system’s nonlinear response. The proposed computational platform thus enables efficient multiparametric analysis of cracked structures. The effects of crack location, crack depth, and excitation frequency on the cantilever beam are parametrically investigated using the proposed method. Nonlinear features such as sub-harmonic resonance, non-stationary motion, multistability, and frequency shift are also discussed. Finally, an experimental analysis is conducted to validate the numerical results. The results of this work suggest that the potential cracks in cantilever beams can be identified using a frequency-sweep process.
摘要... I
Abstract...II
Acknowledgment...III
Vita... IV
Publications... IV
Content...V
List of figures... VI
List of tables... XI
Nomenclature...XII
Chapter 1 Introduction ...1
Chapter 2 Methodology...4
2.1 Construction of the discrete model...4
2.2 Numerical analysis of the nonlinear dynamics...7
2.3 Experimental setup ...10
Chapter 3 Results and Discussion...16
3.1 Numerical convergence analysis...16
3.2 Parametric analysis...23
3.3 Experimental results...33
3.4 Discussion...42
Chapter 4 Conclusions and Future Work...45
Reference ...47
Appendix...50
[1] Ou, J. and H. Li, Structural health monitoring in mainland China: review and future trends. Structural health monitoring, 2010. 9(3): p. 219-231.
[2] Chomette, B., Nonlinear multiple breathing cracks detection using direct zeros estimation of higher-order frequency response function. Communications in Nonlinear Science and Numerical Simulation, 2020. 89: p. 105330.
[3] Tamhane, D., et al., Feature engineering of time-domain signals based on principal component analysis for rebar corrosion assessment using pulse eddy current. IEEE Sensors Journal, 2021. 21(19): p. 22086-22093.
[4] Cao, M., et al., Structural damage identification using damping: a compendium of uses and features. Smart Materials and structures, 2017. 26(4): p. 043001.
[5] Dragos, K. and K. Smarsly, Distributed adaptive diagnosis of sensor faults using structural response data. Smart Materials and Structures, 2016. 25(10): p. 105019.
[6] Rosafalco, L., et al., Online structural health monitoring by model order reduction and deep learning algorithms. Computers & Structures, 2021. 255: p. 106604.
[7] Chondros, T. and A. Dimarogonas, Identification of cracks in welded joints of complex structures. Journal of sound and vibration, 1980. 69(4): p. 531-538.
[8] Peng, J.Y., et al. Natural Frequency Spectra of Cracked Beams for Dynamic Property Characterization. in Applied Mechanics and Materials. 2013. Trans Tech Publ.
[9] Liang, R.Y., F.K. Choy, and J. Hu, Detection of cracks in beam structures using measurements of natural frequencies. Journal of the Franklin Institute, 1991. 328(4): p. 505-518.
[10] Zheng, D.Y. and N. Kessissoglou, Free vibration analysis of a cracked beam by finite element method. Journal of Sound and vibration, 2004. 273(3): p. 457-475.
[11] Ong, Z., A. Rahman, and Z. Ismail, Determination of damage severity on rotor shaft due to crack using damage index derived from experimental modal data. Experimental Techniques, 2014. 38(5): p. 18-30.
[12] Kharazan, M., S. Irani, and M. Reza Salimi, Nonlinear vibration analysis of a cantilever beam with a breathing crack and bilinear behavior. Journal of Vibration and Control, 2022. 28(19-20): p. 2653-2665.
[13] Mungla, M.J., D.S. Sharma, and R.R. Trivedi, Identification of a crack in clamped-clamped beam using frequency-based method and genetic algorithm. Procedia Engineering, 2016. 144: p. 1426-1434.
[14] Giannini, O., P. Casini, and F. Vestroni, Nonlinear harmonic identification of breathing cracks in beams. Computers & Structures, 2013. 129: p. 166-177.
[15] Huang, Y.-h., et al., Research on geometric features of phase diagram and crack identification of cantilever beam with breathing crack. Results in Physics, 2019. 15: p. 102561.
[16] Kharazan, M., et al., Effect of a breathing crack on the damping changes in nonlinear vibrations of a cracked beam: Experimental and theoretical investigations. Journal of Vibration and Control, 2021. 27(19-20): p. 2345-2353.
[17] Kharazan, M., et al., Nonlinear vibration analysis of a cantilever beam with multiple breathing edge cracks. International Journal of Non-Linear Mechanics, 2021. 136: p. 103774.
[18] Bovsunovsky, A. and C. Surace, Non-linearities in the vibrations of elastic structures with a closing crack: A state of the art review. Mechanical Systems and Signal Processing, 2015. 62: p. 129-148.
[19] Broda, D., et al., Generation of higher harmonics in longitudinal vibration of beams with breathing cracks. Journal of Sound and Vibration, 2016. 381: p. 206-219.
[20] Xu, W., et al., Nonlinear pseudo-force in a breathing crack to generate harmonics. Journal of Sound and Vibration, 2021. 492: p. 115734.
[21] Zhang, M., et al., Damage detection of fatigue cracks under nonlinear boundary condition using subharmonic resonance. Ultrasonics, 2017. 77: p. 152-159.
[22] Zavodney, L.D. and A. Nayfeh, The non-linear response of a slender beam carrying a lumped mass to a principal parametric excitation: theory and experiment. International Journal of Non-Linear Mechanics, 1989. 24(2): p. 105-125.
[23] Meesala, V.C. and M.R. Hajj, Response variations of a cantilever beam–tip mass system with nonlinear and linearized boundary conditions. Journal of Vibration and Control, 2019. 25(3): p. 485-496.
[24] Utzeri, M., et al., Nonlinear vibrations of a composite beam in large displacements: analytical, numerical, and experimental approaches. Journal of Computational and Nonlinear Dynamics, 2021. 16(2).
[25] Newmark, N.M., A method of computation for structural dynamics. Journal of the engineering mechanics division, 1959. 85(3): p. 67-94.
[26] Dormand, J.R. and P.J. Prince, A family of embedded Runge-Kutta formulae. Journal of computational and applied mathematics, 1980. 6(1): p. 19-26.
[27] Parhi, D.R. and S.P. Jena, Dynamic and experimental analysis on response of multi-cracked structures carrying transit mass. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2017. 231(1): p.4925-35.
[28] Saito, A., M.P. Castanier, and C. Pierre. Efficient nonlinear vibration analysis of the forced response of rotating cracked blades. in ASME International Mechanical Engineering Congress and Exposition. 2006.
[29] Zucca, S. and B.I. Epureanu, Reduced order models for nonlinear dynamic analysis of structures with intermittent contacts. Journal of Vibration and Control, 2018. 24(12): p. 2591-2604.
[30] Tien, M.-H. and K. D'Souza, Analyzing bilinear systems using a new hybrid symbolic-numeric computational method. Journal of Vibration and Acoustics, 2019. 141(3).
[31] Tien, M.-H. and K. D’Souza, Transient dynamic analysis of cracked structures with multiple contact pairs using generalized HSNC. Nonlinear Dynamics, 2019. 96(2): p. 1115-1131.
[32] Neves, A., F. Simões, and A.P. Da Costa, Vibrations of cracked beams: Discrete mass and stiffness models. Computers & Structures, 2016. 168: p. 68-77.
[33] Okamura, H., Liu, H. W., Chu, C.-S., & Liebowitz, H., A cracked column under compression. Engineering Fracture Mechanics, 1969. 1(3): p. 547-564.
[34] Rao, S., Mechanical Vibrations. Pearson Education, Incorporated., 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *