|
[1] LiDAR Magazine, [Online]. Available: https://lidarmag.com/2019/12/04/. [2] Phys.org, [Online]. Avaliable: https://phys.org/news/. [3] Geospatial World, [Online]. Available: https://www.geospatialworld.net/. [4] Navy recognition, [Online]. Available: https://www.navyrecognition.com/. [5] Yole Developpement, [Online]. Available: http://www.yole.fr/. [6] D. Wang, C. Watkins, and H. Xie, "MEMS Mirrors for LiDAR: A Review," Micromachines, vol. 11, no. 5, 2020. [7] K. E. Petersen, "Silicon Torsional Scanning Mirror," IBM Journal of Research and Development, vol. 24, no. 5, pp. 631-637, 1980. [8] L.-S. Fan, Y.-C. Tai, and R. S. Muller, "IC-processed electrostatic micromotors," 1988 IEEE Int. Electron Devices Meeting, pp. 666-669, 1988. [9] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, "Laterally Driven Polysilicon Resonant Microstructures," Sensors and Actuators, vol. 20, no. 1, pp. 25-32, 1989. [10] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, "Micro-machined three-dimensional micro-optics for integrated free-space optical system," IEEE Photonics Technology Letters, vol. 6, no. 12, pp. 1445-1447, 1994. [11] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, "Realization of novel monolithic free-space optical disk pickup heads by surface micromachining," Opt. Lett., vol. 21, no. 2, pp. 155-157, 1996. [12] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, "Surface-micromachined micro-XYZ stages for free-space microoptical bench," IEEE Photonics Technology Letters, vol. 9, no. 3, pp. 345-347, 1997. [13] K. S. J. Pister, "Hinged polysilicon structures with integrated CMOS TFTs," Technical Digest IEEE Solid-State Sensor and Actuator Workshop, pp. 136-139, 1992. [14] F. Li, L. Shi-Sheng, and M. C. Wu, "Self-assembled micro-XYZ stages for optical scanning and alignment," Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, vol. 1, pp. 266-267, 1997. [15] L. Fan and M. C. Wu, "Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator," 1998 IEEE/LEOS Summer Topical Meeting, pp. II/107-II/108, 1998. [16] K. Meng-Hsiung, O. Solgaard, K. Y. Lau, and R. S. Muller, "Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning," Journal of Microelectromechanical Systems, vol. 7, no. 1, pp. 27-37, 1998. [17] A. A. Vladimir, P. Flavio, and J. B. David, "Stress-induced curvature engineering in surface-micromachined devices," Proc.SPIE, vol. 3680, 1999. [18] A. A. Vladimir, P. Flavio, A. B. Cristian, A. Susanne, C. R. Giles, and J. B. David, "Lucent Microstar micromirror array technology for large optical crossconnects," Proc.SPIE, vol. 4178, 2000. [19] V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D. T. Neilson, C. R. Giles, and D. Bishop, "Beam-Steering Micromirrors for Large Optical Cross-Connects," J. Lightwave Technol., vol. 21, no. 3, p. 634, 2003. [20] L.-Y. Lin, E. L. Goldstein, and R. W. Tkach, "On the Expandability of Free-Space Micromachined Optical Cross Connects," J. Lightwave Technol., vol. 18, no. 4, p. 482, 2000. [21] R. A. Conant, J. T. Nee, K. Y. Lau and R. S. Muller, "Dynamic deformation of scanning mirrors", Proc. IEEE/LEOS Int. Conf. Opt. MEMS, vol. 2, pp. 49-50, 2000. [22] M. R. Hart, R. A. Conant, K. Y. Lau, and R. S. Muller, "Stroboscopic interferometer system for dynamic MEMS characterization," Journal of Microelectromechanical Systems, vol. 9, no. 4, pp. 409-418, 2000. [23] B. C. Patrick, L. Shi-sheng, P. Sangtae, T. Ming-Ju, B. Igal, P. David, A. D. Robert, and P. Chuan, "MOEMS: enabling technologies for large optical cross-connects," Proc.SPIE, vol. 4561, 2001. [24] V. Milanović, M. Last, and K. S. J. Pister, "Torsional Micromirrors with Lateral Actuators," Transducers ’01 Eurosensors XV, pp. 1270-1273, 2001. [25] V. Milanovic, "Multilevel beam SOI-MEMS fabrication and applications," Journal of Microelectromechanical Systems, vol. 13, no. 1, pp. 19-30, 2004. [26] M. Wu and W. Fang, "Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes," Journal of Micromechanics and Microengineering, vol. 15, no. 3, pp. 535-542, 2004. [27] M. Wu and W. Fang, "A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS," Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp. 260-265, 2006. [28] M. Wu, H. Lin, and W. Fang, "A Poly-Si-Based Vertical Comb-Drive Two-Axis Gimbaled Scanner for Optical Applications," IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2111-2113, 2006. [29] A. Arslan, D. Brown, W. O. Davis, S. Holmstrom, S. K. Gokce, and H. Urey, "Comb-Actuated Resonant Torsional Microscanner With Mechanical Amplification," Journal of Microelectromechanical Systems, vol. 19, no. 4, pp. 936-943, 2010. [30] S. K. Gokce, S. Holmstrom, D. Brown, W. O. Davis, and H. Urey, "A high-frequency comb-actuated resonant MEMS scanner for microdisplays," 16th International Conference on Optical MEMS and Nanophotonics, pp. 35-36, 2011. [31] A. C. L. Hung, H. Y. H. Lai, T.-W. Lin, S.-G. Fu, and M. S. C. Lu, "An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display," Sensors and Actuators A: Physical, vol. 222, pp. 122-129, 2015. [32] N. Asada, H. Matsuki, K. Minami, and M. Esashi, "Silicon micromachined two-dimensional galvano optical scanner," IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4647-4649, 1994. [33] L. O. S. Ferreira and S. Moehlecke, "A silicon micromechanical galvanometric scanner," Sensors and Actuators A: Physical, vol. 73, no. 3, pp. 252-260, 1999. [34]S.-H. Ahn and Y.-K. Kim, "Silicon scanning mirror of two DOF with compensation current routing," Journal of Micromechanics and Microengineering, vol. 14, no. 11, pp. 1455-1461, 2004. [35] HA. Yang and W. Fang, "A Novel Coil-Less Lorentz Force 2D Scanning Mirror Using Eddy Current," 19th IEEE International Conference on Micro Electro Mechanical Systems, pp. 774-777, 2006. [36] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, "Two-axis electromagnetic microscanner for high resolution displays," Journal of Microelectromechanical Systems, vol. 15, no. 4, pp. 786-794, 2006. [37] J.W. Judy, "Magnetic microactuators with polysilicon flexures," Masters Thesis, Department of EECS, University of California, Berkeley, 1994. [38] J. W. Judy, R. S. Muller, and H. H. Zappe, "Magnetic microactuation of polysilicon flexure structures," Journal of Microelectromechanical Systems, vol. 4, no. 4, pp. 162-169, 1995. [39] J. W. Judy and R. S. Muller, "Magnetic microactuation of torsional polysilicon structures," Sensors and Actuators A: Physical, vol. 53, no. 1, pp. 392-397, 1996. [40] J. C. Hyoung, Y. Jun, T. K. Stephen, B. Fred Richard, Jr., and A. Chong Hyuk, "Scanning silicon micromirror using a bidirectionally movable magnetic microactuator," Proc.SPIE, vol. 4178, 2000. [41] 湯宗霖, “利用靜磁力與勞侖茲力驅動雙軸循序掃描面鏡”, 國立清華大學碩士論文, 2006. [42] H. Yang, T. Tang, S. T. Lee, and W. Fang, "A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force," Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 511-520, 2007. [43] J. G. Smits, K. Fujimoto, and V. F. Kleptsyn, "Microelectromechanical flexure PZT actuated optical scanner: static and resonance behavior," Journal of Micromechanics and Microengineering, vol. 15, no. 6, pp. 1285-1293, 2005. [44] F. Filhol, E. Defaÿ, C. Divoux, C. Zinck, and M. T. Delaye, "Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning," Sensors and Actuators A: Physical, vol. 123-124, pp. 483-489, 2005. [45] T. Masanao, A. Masahiro, Y. Yoshiaki, and T. Hiroshi, "A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator," 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 699-702, 2007. [46] W. Liu, Y. Zhu, K. Jia, W. Liao, Y. Tang, B. Wang, and H. Xie, "A tip–tilt–piston micromirror with a double S-shaped unimorph piezoelectric actuator," Sensors and Actuators A: Physical, vol. 193, pp. 121-128, 2013. [47] U. Baran, D. Brown, S. Holmstrom, D. Balma, W. O. Davis, P. Muralt, and H. Urey, "Resonant PZT MEMS Scanner for High-Resolution Displays," Journal of Microelectromechanical Systems, vol. 21, no. 6, pp. 1303-1310, 2012. [48] S. Gu-Stoppel, J. Janes, D. Kaden, H. J. Quenzer, U. Hofmann, and W. Benecke, "Piezoelectric resonant micromirror with high frequency and large deflection applying mechanical leverage amplification," Proc.SPIE, vol. 8612, 2013. [49] K. Meinel, C. Stoeckel, M. Melzer, S. Zimmermann, R. Forke, K. Hiller, and T. Otto, "Piezoelectric Scanning Micromirror with Large Scan Angle Based on Thin Film Aluminum Nitride," 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), pp. 1518-1521, 2019. [50] K. Meinel, C. Stoeckel, M. Melzer, S. Zimmermann, R. Forke, K. Hiller, and T. Otto, "Piezoelectric Scanning Micromirror With Built-In Sensors Based on Thin Film Aluminum Nitride," IEEE Sensors Journal, vol. 21, no. 8, pp. 9682-9689, 2021. [51] G. Mendicino, M. Merli, R. Carminati, N. Boni, A. Opreni, and A. Frangi, "Electro-mechanical validation of a resonant MEMS mirror with PZT actuation and PZR sensing," Proc.SPIE, vol. 11697,2021. [52] J. Wang, C. Salm, E. Houwman, M. Nguyen, and J. Schmitz, "Humidity and polarity influence on MIM PZT capacitor degradation and breakdown," 2016 IEEE International Integrated Reliability Workshop (IIRW), pp. 65-68, 2016. [53] R. P. Dahl-Hansen, T. Tybell, and F. Tyholdt, "Performance and reliability of PZT-based piezoelectric micromirrors operated in realistic environments," 2018 IEEE ISAF-FMA-AMF-AMEC-PFM Joint Conference (IFAAP), pp. 1-4, 2018. [54] R. P. Dahl-Hansen, F. Tyholdt, J. Gjessing, A. Vogl, P. Wittendorp, J. Vedum, and T. Tybell, "On the Effect of Water-Induced Degradation of Thin-Film Piezoelectric Microelectromechanical Systems," Journal of Microelectromechanical Systems, vol. 30, no. 1, pp. 105-115, 2021. [55] P. Stelzer, A. Strasser, C. Steger, H. Plank, and N. Druml, "Towards Synchronisation of Multiple Independent MEMS-based Micro-Scanning LiDAR Systems," 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1080-1085, 2020. [56] U. Hakan, "Torsional MEMS scanner design for high-resolution scanning display systems," Proc.SPIE, vol. 4773, 2002. [57] R. Farrugia, I. Grech, O. Casha, J. Micallef, and E. Gatt, "Analysis of dynamic deformation in 1-D resonating micromirrors," 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), pp. 1-6, 2016. [58] S. Hsu, T. Klose, C. Drabe, and H. Schenk, "Fabrication and characterization of a dynamically flat high resolution micro-scanner," Journal of Optics A: Pure and Applied Optics, vol. 10, no. 4, p. 044005, 2008. [59] S. Fabian, S. Frank, A. Jörg, M. Pauline, J. Christian, P. Leon, H. Felix, K. Dirk, O. Hans-Joachim, L. Fabian, B. Andreas, W. Thomas von, and H. Ulrich, "Resonant 1D MEMS mirror with a total optical scan angle of 180° for automotive LiDAR," Proc.SPIE, vol. 11293, 2020. [60] AEC Documents, [Online]. Available: http://www.aecouncil.com/AECDocuments.html. [61] 王紹達, “單壓電層懸臂式麥克風之設計與分析”, 國立清華大學碩士論文, 2021. [62] Sawyer-Tower Circuit, [Online]. Available: http://mentors.tanms-erc.org/mentor-responsibilities/piezoelectric-characterization. [63] U. Nabholz, W. Heinzelmann, J. E. Mehner, and P. Degenfeld-Schonburg, "Amplitude- and Gas Pressure-Dependent Nonlinear Damping of High-Q Oscillatory MEMS Micro Mirrors," Journal of Microelectromechanical Systems, vol. 27, no. 3, pp. 383-391, 2018.
|