帳號:guest(3.145.86.225)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉世棋
作者(外文):Liu, Shih-Chi
論文名稱(中文):應用於光達的壓電式微掃描面鏡之性能提升設計與分析
論文名稱(外文):Design and Analysis of Piezoelectric MEMS Scanning Mirror for Performance Enhancement in LiDAR Applications
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-leun
口試委員(中文):賴梅鳳
謝哲偉
吳名清
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:109033594
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:152
中文關鍵詞:單軸微掃描面鏡壓電致動性能指標鋯鈦酸鉛
外文關鍵詞:1D MEMS mirrorpiezoelectric actuationFigure of Merit (FoM)PZT
相關次數:
  • 推薦推薦:0
  • 點閱點閱:222
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來在智慧車輛的概念興起後,光學雷達被視為車用主動遙測技術最重要的系統之一,光達能夠在複雜的天氣狀況中提供強大的三維空間解析及建構能力,是讓車輛達到更高的自動駕駛階級之關鍵技術。微機電式的光達相比於其他種類的光達系統有著體積小、快速響應及成本低的優勢,且能夠順應微縮化的趨勢應用在更廣泛的領域。壓電式的微掃描面鏡相比於其他種致動機制,在車輛的環境中有更好的相容性,因此本研究利用PZT壓電薄膜搭配SOI晶圓進行壓電式微掃描面鏡的設計與實現,微掃描面鏡的性能指標由掃描頻率、掃描角度以及面鏡尺寸共同決定,本研究提出藉由致動器結構的改善設計來提升整體性能指標的乘積。完成元件製程後首先針對材料的機械參數和壓電參數進行萃取與分析,接著進行微掃描面鏡元件的動態分析以及性能量測,結果顯示所提出之兩種微掃描面鏡設計,在20 Vpp的交流訊號驅動下,其掃描模態共振頻分別在1.73 kHz以及2.58 kHz,且光學角分別達48°以及50°,後者的性能指標乘積較前者提升了約56%,成功透過致動器結構的更動來達到更好的操作性能,且較高的操作頻率說明其在車輛環境中使用能保有一定的元件可靠性。
In recent years, LiDAR is regarded as one of the most important building blocks of active remote sensing technology for automobiles with the rise of smart vehicles. LiDAR can provide powerful three-dimensional imaging and analyzing capabilities of the surroundings even under adverse weather conditions, allowing smart vehicles to achieve high level automated driving systems, which is the key technology of self-driving. Compared with other types of LiDAR systems, MEMS LiDAR has the advantages of smaller size, fast response and low cost. Moreover, following the trend of miniaturization, MEMS LiDAR can be used in more fields. Piezoelectric MEMS scanners have better compatibility in the automobile environment comparing to other actuation mechanisms. Therefore, this study untilized PZT thin film alongside SOI wafer to design and implement a piezoelectric MEMS scanner. The figure of merit (FoM) of MEMS scanner decided by its scanning frequency, scanning angle and mirror size. FoM enhanced design of piezoelectric MEMS scanner would be proposed and fabricated, followed by material and piezoelectric properties extraction and analysis. The measurement results show that the two proposed design achieved scanning angle of 48° and 50° at 1.73 kHz and 2.58 kHz respectively using 20 Vpp driving voltage. The FoM was successfully enhanced by 56% through actuator structure design, and the scanning frequency was acceptable for automobile application.
摘要 I
Abstract II
誌謝 III
目錄 VIII
圖目錄 XI
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 微機電式掃描面鏡文獻回顧 4
1-2-1 靜電式微掃描面鏡 4
1-2-2 電磁式微掃描面鏡 8
1-2-3 壓電式微掃描面鏡 11
1-3 研究動機 16
1-4 全文架構 18
第二章 致動原理與元件設計 35
2-1 微掃描面鏡性能指標 35
2-2 壓電效應與材料選用 38
2-3 微掃描面鏡結構設計 40
2-3-1 單層壓電懸臂式致動器 41
2-3-2 雙彎曲式致動器掃描面鏡設計 46
2-3-3 彎曲式致動器優化設計 52
2-3-4 模擬結果比較與探討 54
2-4 小結 55
第三章 製程平台與製程結果 69
3-1 製程流程 69
3-2 製程結果 72
3-2-1 元件結構尺寸量測 72
3-2-2 肋補強結構 75
3-2-3 反射面鏡表面形貌 76
3-3 小結 78
第四章 量測結果 86
4-1 PZT材料參數萃取 86
4-1-1 楊氏模數 86
4-1-2 極化-電場曲線及位移-電場曲線 91
4-1-3 壓電係數d31 96
4-1-4 電容值及介電常數 100
4-2 微掃描面鏡之動態量測 101
4-2-1 元件共振頻率 102
4-2-2 共振模態分析 103
4-3 微掃描面鏡之性能量測 104
4-3-1 機械角量測 105
4-3-2 掃描角量測 107
4-3-3 元件摔落測試 108
4-3-4 元件故障分析 109
4-4 小結 110
第五章 結論與未來工作 131
5-1 結論 131
5-2 未來工作 132
5-2-1 微掃描面鏡新結構設計 132
5-2-2 壓電感測機制設計與探討 137
參考文獻 147
[1] LiDAR Magazine, [Online].
Available: https://lidarmag.com/2019/12/04/.
[2] Phys.org, [Online]. Avaliable: https://phys.org/news/.
[3] Geospatial World, [Online].
Available: https://www.geospatialworld.net/.
[4] Navy recognition, [Online].
Available: https://www.navyrecognition.com/.
[5] Yole Developpement, [Online]. Available: http://www.yole.fr/.
[6] D. Wang, C. Watkins, and H. Xie, "MEMS Mirrors for LiDAR: A Review," Micromachines, vol. 11, no. 5, 2020.
[7] K. E. Petersen, "Silicon Torsional Scanning Mirror," IBM Journal of Research and Development, vol. 24, no. 5, pp. 631-637, 1980.
[8] L.-S. Fan, Y.-C. Tai, and R. S. Muller, "IC-processed electrostatic micromotors," 1988 IEEE Int. Electron Devices Meeting, pp. 666-669, 1988.
[9] W. C. Tang, T.-C. H. Nguyen, and R. T. Howe, "Laterally Driven Polysilicon Resonant Microstructures," Sensors and Actuators, vol. 20, no. 1, pp. 25-32, 1989.
[10] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, "Micro-machined three-dimensional micro-optics for integrated free-space optical system," IEEE Photonics Technology Letters, vol. 6, no. 12, pp. 1445-1447, 1994.
[11] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, "Realization of novel monolithic free-space optical disk pickup heads by surface micromachining," Opt. Lett., vol. 21, no. 2, pp. 155-157, 1996.
[12] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, "Surface-micromachined micro-XYZ stages for free-space microoptical bench," IEEE Photonics Technology Letters, vol. 9, no. 3, pp. 345-347, 1997.
[13] K. S. J. Pister, "Hinged polysilicon structures with integrated CMOS TFTs," Technical Digest IEEE Solid-State Sensor and Actuator Workshop, pp. 136-139, 1992.
[14] F. Li, L. Shi-Sheng, and M. C. Wu, "Self-assembled micro-XYZ stages for optical scanning and alignment," Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, vol. 1, pp. 266-267, 1997.
[15] L. Fan and M. C. Wu, "Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator," 1998 IEEE/LEOS Summer Topical Meeting, pp. II/107-II/108, 1998.
[16] K. Meng-Hsiung, O. Solgaard, K. Y. Lau, and R. S. Muller, "Electrostatic combdrive-actuated micromirrors for laser-beam scanning and positioning," Journal of Microelectromechanical Systems, vol. 7, no. 1, pp. 27-37, 1998.
[17] A. A. Vladimir, P. Flavio, and J. B. David, "Stress-induced curvature engineering in surface-micromachined devices," Proc.SPIE, vol. 3680, 1999.
[18] A. A. Vladimir, P. Flavio, A. B. Cristian, A. Susanne, C. R. Giles, and J. B. David, "Lucent Microstar micromirror array technology for large optical crossconnects," Proc.SPIE, vol. 4178, 2000.
[19] V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, R. Ryf, D. T. Neilson, C. R. Giles, and D. Bishop, "Beam-Steering Micromirrors for Large Optical Cross-Connects," J. Lightwave Technol., vol. 21, no. 3, p. 634, 2003.
[20] L.-Y. Lin, E. L. Goldstein, and R. W. Tkach, "On the Expandability of Free-Space Micromachined Optical Cross Connects," J. Lightwave Technol., vol. 18, no. 4, p. 482, 2000.
[21] R. A. Conant, J. T. Nee, K. Y. Lau and R. S. Muller, "Dynamic deformation of scanning mirrors", Proc. IEEE/LEOS Int. Conf. Opt. MEMS, vol. 2, pp. 49-50, 2000.
[22] M. R. Hart, R. A. Conant, K. Y. Lau, and R. S. Muller, "Stroboscopic interferometer system for dynamic MEMS characterization," Journal of Microelectromechanical Systems, vol. 9, no. 4, pp. 409-418, 2000.
[23] B. C. Patrick, L. Shi-sheng, P. Sangtae, T. Ming-Ju, B. Igal, P. David, A. D. Robert, and P. Chuan, "MOEMS: enabling technologies for large optical cross-connects," Proc.SPIE, vol. 4561, 2001.
[24] V. Milanović, M. Last, and K. S. J. Pister, "Torsional Micromirrors with Lateral Actuators," Transducers ’01 Eurosensors XV, pp. 1270-1273, 2001.
[25] V. Milanovic, "Multilevel beam SOI-MEMS fabrication and applications," Journal of Microelectromechanical Systems, vol. 13, no. 1, pp. 19-30, 2004.
[26] M. Wu and W. Fang, "Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes," Journal of Micromechanics and Microengineering, vol. 15, no. 3, pp. 535-542, 2004.
[27] M. Wu and W. Fang, "A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS," Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp. 260-265, 2006.
[28] M. Wu, H. Lin, and W. Fang, "A Poly-Si-Based Vertical Comb-Drive Two-Axis Gimbaled Scanner for Optical Applications," IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2111-2113, 2006.
[29] A. Arslan, D. Brown, W. O. Davis, S. Holmstrom, S. K. Gokce, and H. Urey, "Comb-Actuated Resonant Torsional Microscanner With Mechanical Amplification," Journal of Microelectromechanical Systems, vol. 19, no. 4, pp. 936-943, 2010.
[30] S. K. Gokce, S. Holmstrom, D. Brown, W. O. Davis, and H. Urey, "A high-frequency comb-actuated resonant MEMS scanner for microdisplays," 16th International Conference on Optical MEMS and Nanophotonics, pp. 35-36, 2011.
[31] A. C. L. Hung, H. Y. H. Lai, T.-W. Lin, S.-G. Fu, and M. S. C. Lu, "An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display," Sensors and Actuators A: Physical, vol. 222, pp. 122-129, 2015.
[32] N. Asada, H. Matsuki, K. Minami, and M. Esashi, "Silicon micromachined two-dimensional galvano optical scanner," IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4647-4649, 1994.
[33] L. O. S. Ferreira and S. Moehlecke, "A silicon micromechanical galvanometric scanner," Sensors and Actuators A: Physical, vol. 73, no. 3, pp. 252-260, 1999.
[34]S.-H. Ahn and Y.-K. Kim, "Silicon scanning mirror of two DOF with compensation current routing," Journal of Micromechanics and Microengineering, vol. 14, no. 11, pp. 1455-1461, 2004.
[35] HA. Yang and W. Fang, "A Novel Coil-Less Lorentz Force 2D Scanning Mirror Using Eddy Current," 19th IEEE International Conference on Micro Electro Mechanical Systems, pp. 774-777, 2006.
[36] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, "Two-axis electromagnetic microscanner for high resolution displays," Journal of Microelectromechanical Systems, vol. 15, no. 4, pp. 786-794, 2006.
[37] J.W. Judy, "Magnetic microactuators with polysilicon flexures," Masters Thesis, Department of EECS, University of California, Berkeley, 1994.
[38] J. W. Judy, R. S. Muller, and H. H. Zappe, "Magnetic microactuation of polysilicon flexure structures," Journal of Microelectromechanical Systems, vol. 4, no. 4, pp. 162-169, 1995.
[39] J. W. Judy and R. S. Muller, "Magnetic microactuation of torsional polysilicon structures," Sensors and Actuators A: Physical, vol. 53, no. 1, pp. 392-397, 1996.
[40] J. C. Hyoung, Y. Jun, T. K. Stephen, B. Fred Richard, Jr., and A. Chong Hyuk, "Scanning silicon micromirror using a bidirectionally movable magnetic microactuator," Proc.SPIE, vol. 4178, 2000.
[41] 湯宗霖, “利用靜磁力與勞侖茲力驅動雙軸循序掃描面鏡”, 國立清華大學碩士論文, 2006.
[42] H. Yang, T. Tang, S. T. Lee, and W. Fang, "A Novel Coilless Scanning Mirror Using Eddy Current Lorentz Force and Magnetostatic Force," Journal of Microelectromechanical Systems, vol. 16, no. 3, pp. 511-520, 2007.
[43] J. G. Smits, K. Fujimoto, and V. F. Kleptsyn, "Microelectromechanical flexure PZT actuated optical scanner: static and resonance behavior," Journal of Micromechanics and Microengineering, vol. 15, no. 6, pp. 1285-1293, 2005.
[44] F. Filhol, E. Defaÿ, C. Divoux, C. Zinck, and M. T. Delaye, "Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning," Sensors and Actuators A: Physical, vol. 123-124, pp. 483-489, 2005.
[45] T. Masanao, A. Masahiro, Y. Yoshiaki, and T. Hiroshi, "A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator," 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 699-702, 2007.
[46] W. Liu, Y. Zhu, K. Jia, W. Liao, Y. Tang, B. Wang, and H. Xie, "A tip–tilt–piston micromirror with a double S-shaped unimorph piezoelectric actuator," Sensors and Actuators A: Physical, vol. 193, pp. 121-128, 2013.
[47] U. Baran, D. Brown, S. Holmstrom, D. Balma, W. O. Davis, P. Muralt, and H. Urey, "Resonant PZT MEMS Scanner for High-Resolution Displays," Journal of Microelectromechanical Systems, vol. 21, no. 6, pp. 1303-1310, 2012.
[48] S. Gu-Stoppel, J. Janes, D. Kaden, H. J. Quenzer, U. Hofmann, and W. Benecke, "Piezoelectric resonant micromirror with high frequency and large deflection applying mechanical leverage amplification," Proc.SPIE, vol. 8612, 2013.
[49] K. Meinel, C. Stoeckel, M. Melzer, S. Zimmermann, R. Forke, K. Hiller, and T. Otto, "Piezoelectric Scanning Micromirror with Large Scan Angle Based on Thin Film Aluminum Nitride," 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), pp. 1518-1521, 2019.
[50] K. Meinel, C. Stoeckel, M. Melzer, S. Zimmermann, R. Forke, K. Hiller, and T. Otto, "Piezoelectric Scanning Micromirror With Built-In Sensors Based on Thin Film Aluminum Nitride," IEEE Sensors Journal, vol. 21, no. 8, pp. 9682-9689, 2021.
[51] G. Mendicino, M. Merli, R. Carminati, N. Boni, A. Opreni, and A. Frangi, "Electro-mechanical validation of a resonant MEMS mirror with PZT actuation and PZR sensing," Proc.SPIE, vol. 11697,2021.
[52] J. Wang, C. Salm, E. Houwman, M. Nguyen, and J. Schmitz, "Humidity and polarity influence on MIM PZT capacitor degradation and breakdown," 2016 IEEE International Integrated Reliability Workshop (IIRW), pp. 65-68, 2016.
[53] R. P. Dahl-Hansen, T. Tybell, and F. Tyholdt, "Performance and reliability of PZT-based piezoelectric micromirrors operated in realistic environments," 2018 IEEE ISAF-FMA-AMF-AMEC-PFM Joint Conference (IFAAP), pp. 1-4, 2018.
[54] R. P. Dahl-Hansen, F. Tyholdt, J. Gjessing, A. Vogl, P. Wittendorp, J. Vedum, and T. Tybell, "On the Effect of Water-Induced Degradation of Thin-Film Piezoelectric Microelectromechanical Systems," Journal of Microelectromechanical Systems, vol. 30, no. 1, pp. 105-115, 2021.
[55] P. Stelzer, A. Strasser, C. Steger, H. Plank, and N. Druml, "Towards Synchronisation of Multiple Independent MEMS-based Micro-Scanning LiDAR Systems," 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1080-1085, 2020.
[56] U. Hakan, "Torsional MEMS scanner design for high-resolution scanning display systems," Proc.SPIE, vol. 4773, 2002.
[57] R. Farrugia, I. Grech, O. Casha, J. Micallef, and E. Gatt, "Analysis of dynamic deformation in 1-D resonating micromirrors," 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), pp. 1-6, 2016.
[58] S. Hsu, T. Klose, C. Drabe, and H. Schenk, "Fabrication and characterization of a dynamically flat high resolution micro-scanner," Journal of Optics A: Pure and Applied Optics, vol. 10, no. 4, p. 044005, 2008.
[59] S. Fabian, S. Frank, A. Jörg, M. Pauline, J. Christian, P. Leon, H. Felix, K. Dirk, O. Hans-Joachim, L. Fabian, B. Andreas, W. Thomas von, and H. Ulrich, "Resonant 1D MEMS mirror with a total optical scan angle of 180° for automotive LiDAR," Proc.SPIE, vol. 11293, 2020.
[60] AEC Documents, [Online].
Available: http://www.aecouncil.com/AECDocuments.html.
[61] 王紹達, “單壓電層懸臂式麥克風之設計與分析”, 國立清華大學碩士論文, 2021.
[62] Sawyer-Tower Circuit, [Online].
Available: http://mentors.tanms-erc.org/mentor-responsibilities/piezoelectric-characterization.
[63] U. Nabholz, W. Heinzelmann, J. E. Mehner, and P. Degenfeld-Schonburg, "Amplitude- and Gas Pressure-Dependent Nonlinear Damping of High-Q Oscillatory MEMS Micro Mirrors," Journal of Microelectromechanical Systems, vol. 27, no. 3, pp. 383-391, 2018.
(此全文20270801後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *